Blazar boosted Dark Matter -- direct detection constraints on $σ_{eχ}$ : Role of energy dependent cross sections (2301.00209v4)
Abstract: Elastic collisions with relativistic electrons from the blazar's jet can accelerate dark matter (DM) particles in the DM spike surrounding the supermassive black hole at its center. This can allow one to set stringent limits on the DM-electron scattering cross section ($\bar{\sigma}_{e\chi}$) for DM masses less than 100 MeV. We consider DM particles boosted by energetic electrons in the jets of the blazars TXS 0506+056 and BL Lacertae. Both vector and scalar mediators for the scattering of electron and electrophilic fermionic DM are studied. We highlight that the ensuing energy dependency of the S-matrix for the corresponding Lorentz structure of the vertex significantly modifies the constraints. We find that the revised exclusion limits are orders of magnitude stronger than the equivalent results for the simple constant cross section assumption. Our limits are also assessed for the less cuspy spike.
- E. Aprile et al. (XENON), Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129, 161805 (2022), arXiv:2207.11330 [hep-ex] .
- K. Bays et al. (Super-Kamiokande), Supernova Relic Neutrino Search at Super-Kamiokande, Phys. Rev. D 85, 052007 (2012), arXiv:1111.5031 [hep-ex] .
- C. Kachulis et al. (Super-Kamiokande), Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande, Phys. Rev. Lett. 120, 221301 (2018), arXiv:1711.05278 [hep-ex] .
- J. A. Dror, G. Elor, and R. Mcgehee, Directly Detecting Signals from Absorption of Fermionic Dark Matter, Phys. Rev. Lett. 124, 18 (2020a), arXiv:1905.12635 [hep-ph] .
- J. A. Dror, G. Elor, and R. Mcgehee, Absorption of Fermionic Dark Matter by Nuclear Targets, JHEP 02, 134, arXiv:1908.10861 [hep-ph] .
- T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122, 171801 (2019), arXiv:1810.10543 [hep-ph] .
- C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, Reverse Direct Detection: Cosmic Ray Scattering With Light Dark Matter, Phys. Rev. D 99, 063004 (2019), arXiv:1810.07705 [hep-ph] .
- Y. Ema, F. Sala, and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122, 181802 (2019), arXiv:1811.00520 [hep-ph] .
- Y. Farzan and S. Palomares-Ruiz, Dips in the Diffuse Supernova Neutrino Background, JCAP 06, 014, arXiv:1401.7019 [hep-ph] .
- C. A. Argüelles, A. Kheirandish, and A. C. Vincent, Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos, Phys. Rev. Lett. 119, 201801 (2017), arXiv:1703.00451 [hep-ph] .
- W. Yin, Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal, EPJ Web Conf. 208, 04003 (2019), arXiv:1809.08610 [hep-ph] .
- A. Das and M. Sen, Boosted dark matter from diffuse supernova neutrinos, (2021), arXiv:2104.00027 [hep-ph] .
- D. Ghosh, A. Guha, and D. Sachdeva, Exclusion limits on dark matter-neutrino scattering cross section, Phys. Rev. D 105, 103029 (2022).
- Q.-H. Cao, R. Ding, and Q.-F. Xiang, Searching for sub-MeV boosted dark matter from xenon electron direct detection, Chin. Phys. C 45, 045002 (2021), arXiv:2006.12767 [hep-ph] .
- Y. Ema, F. Sala, and R. Sato, Neutrino experiments probe hadrophilic light dark matter, SciPost Phys. 10, 072 (2021), arXiv:2011.01939 [hep-ph] .
- C. Xia, Y.-H. Xu, and Y.-F. Zhou, Azimuthal asymmetry in cosmic-ray boosted dark matter flux, (2022), arXiv:2206.11454 [hep-ph] .
- G. Elor, R. McGehee, and A. Pierce, Maximizing Direct Detection with HYPER Dark Matter, (2021), arXiv:2112.03920 [hep-ph] .
- T. N. Maity and R. Laha, Cosmic-ray boosted dark matter in Xe-based direct detection experiments, (2022), arXiv:2210.01815 [hep-ph] .
- J.-W. Wang, A. Granelli, and P. Ullio, Direct Detection Constraints on Blazar-Boosted Dark Matter, Phys. Rev. Lett. 128, 221104 (2022), arXiv:2111.13644 [astro-ph.HE] .
- A. Granelli, P. Ullio, and J.-W. Wang, Blazar-boosted dark matter at Super-Kamiokande, JCAP 07 (07), 013, arXiv:2202.07598 [astro-ph.HE] .
- A. A. Abdo et al., The Spectral Energy Distribution of Fermi bright blazars, Astrophys. J. 716, 30 (2010), arXiv:0912.2040 [astro-ph.CO] .
- A. Keivani et al., A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration, Astrophys. J. 864, 84 (2018), arXiv:1807.04537 [astro-ph.HE] .
- M. Petropoulou et al., Multi-Epoch Modeling of TXS 0506+056 and Implications for Long-Term High-Energy Neutrino Emission, Astrophys. J. 891, 115 (2020), arXiv:1911.04010 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361, 147 (2018b), arXiv:1807.08794 [astro-ph.HE] .
- P. Gondolo and J. Silk, Dark matter annihilation at the galactic center, Phys. Rev. Lett. 83, 1719 (1999), arXiv:astro-ph/9906391 .
- P. Ullio, H. Zhao, and M. Kamionkowski, A Dark matter spike at the galactic center?, Phys. Rev. D 64, 043504 (2001), arXiv:astro-ph/0101481 .
- G. Bertone and D. Merritt, Time-dependent models for dark matter at the Galactic Center, Phys. Rev. D 72, 103502 (2005), arXiv:astro-ph/0501555 .
- M. Pospelov, A. Ritz, and M. B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662, 53 (2008), arXiv:0711.4866 [hep-ph] .
- B. Batell, M. Pospelov, and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80, 095024 (2009), arXiv:0906.5614 [hep-ph] .
- X. Chu, T. Hambye, and M. H. G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05, 034, arXiv:1112.0493 [hep-ph] .
- G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev. D 94, 073009 (2016), arXiv:1512.04119 [hep-ph] .
- E. Bernreuther, S. Heeba, and F. Kahlhoefer, Resonant sub-GeV Dirac dark matter, JCAP 03, 040, arXiv:2010.14522 [hep-ph] .
- P. A. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020, 083C01 (2020).
- R. Essig, T. Volansky, and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96, 043017 (2017), arXiv:1703.00910 [hep-ph] .
- L. Barak et al. (SENSEI), SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125, 171802 (2020), arXiv:2004.11378 [astro-ph.CO] .
- P. Agnes et al. (DarkSide-50), Search for dark matter particle interactions with electron final states with DarkSide-50, (2022), arXiv:2207.11968 [hep-ex] .
- K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28, 1330028 (2013), arXiv:1305.4939 [hep-ph] .
- Y. M. Andreev et al., Improved exclusion limit for light dark matter from e+e- annihilation in NA64, Phys. Rev. D 104, L091701 (2021), arXiv:2108.04195 [hep-ex] .
- J. P. Lees et al. (BaBar), Search for Invisible Decays of a Dark Photon Produced in e+e−superscript𝑒superscript𝑒{e}^{+}{e}^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Collisions at BaBar, Phys. Rev. Lett. 119, 131804 (2017), arXiv:1702.03327 [hep-ex] .
- S. Knapen, T. Lin, and K. M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96, 115021 (2017), arXiv:1709.07882 [hep-ph] .
- D. Ghosh and D. Sachdeva, Constraints on Axion-Lepton coupling from Big Bang Nucleosynthesis, JCAP 10, 060, arXiv:2007.01873 [hep-ph] .
- M. Escudero, Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neffsubscript𝑁effN_{\rm eff}italic_N start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT evaluation, JCAP 02, 007, arXiv:1812.05605 [hep-ph] .
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.