Identities for combinatorial sums involving trigonometric functions (2212.14841v1)
Abstract: Let $$ A_{m,n}(a)=\sum_{j=0}m (-4)j {m+j\choose 2j}\sum_{k=0}{n-1} \sin(a+2k\pi/n) \cos{2j}(a+2k\pi/n) $$ and $$ B_{m,n}(a)=\sum_{j=0}m (-4)j {m+j+1\choose 2j+1}\sum_{k=0}{n-1} \sin(a+2k\pi/n) \cos{2j+1}(a+2k\pi/n), $$ where $m\geq 0$ and $n\geq 1$ are integers and $a$ is a real number. We present two proofs for the following results: (i) If $2m+1 \equiv 0 \, (\mbox{mod} \, n)$, then $$ A_{m,n}(a)=(-1)m n \sin((2m+1)a). $$ (ii) If $2m+1 \not\equiv 0 \, (\mbox{mod} \, n)$, then $A_{m,n}(a)=0$. (iii) If $2(m+1) \equiv 0 \, (\mbox{mod} \, n)$, then $$ B_{m,n}(a)=(-1)m \frac{n}{2} \sin(2(m+1)a). $$ (iv) If $2(m+1) \not\equiv 0 \, (\mbox{mod} \, n)$, then $B_{m,n}(a)=0$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.