Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthetic dataset generation methodology for Recommender Systems using statistical sampling methods, a Multinomial Logit model, and a Fuzzy Inference System (2212.14350v1)

Published 29 Dec 2022 in stat.AP and stat.ME

Abstract: It is said that we live in the age of data, and that data is ubiquitous and readily available if one has the tools to harness it. That may well be true, but so is the opposite. It is ever more common to try to start a data science project only to find oneself without quality data. Be it due to just not having collected the needed features, or due to insufficient data, or even legality issues, the list goes on. When this happens, either the project is prematurely abandoned, or similar datasets are searched for and used. However, finding a dataset that answers your needs in terms of features, type of ratings, etc., may not be an easy task, this is particularly the case for recommender systems. In this work, a methodology for the generation of synthetic datasets for recommender systems is presented, thus allowing to overcome the obstacle of not having quality data in sufficient amount readily available. With this methodology, one can generate a synthetic dataset for recommendation composed by numerical/ordinal and nominal features. The dataset is built with Gaussian copulas, Dirichlet and Gaussian distributions, a Multinomial Logit model and a Fuzzy Logic Inference System that generates the ratings according to different user behavioural profiles and perceived item quality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube