Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of Navier-Stokes mild solutions in sub-critical Besov spaces whose regularity exceeds the critical value by $\boldsymbol{ε\in(0,1)}$ (2212.12344v2)

Published 23 Dec 2022 in math.AP

Abstract: We consider mild solutions to the Navier-Stokes initial-value problem which belong to certain ranges $Z_{p,q}{s}(T,n):=\widetilde{L}{1}(0,T;\dot{B}{p,q}{s+2}(\mathbb{R}{n}))\cap\widetilde{L}{\infty}(0,T;\dot{B}{p,q}{s}(\mathbb{R}{n}))$ of Chemin-Lerner spaces. For $n=3$, $\epsilon\in(0,1)$ and $f\in\dot{B}{\infty,\infty}{-1+\epsilon}(\mathbb{R}{3})$, Chemin and Gallagher (Tunis. J. Math., 2019) construct a local solution $u\in\cap{T'\in(0,T_{f,\epsilon}{*})}Z_{\infty,\infty}{-1+\epsilon}(T',3)$ with maximal existence time ${T_{f,\epsilon}{*}\gtrsim_{\varphi,\epsilon}{|f|}{\dot{B}{\infty,\infty}{-1+\epsilon}(\mathbb{R}{3})}{-2/\epsilon}}$, where $\varphi$ is the cutoff function used to define the Littlewood-Paley projections. We improve on this result as follows: for $n\geq 1$, $\epsilon\in(0,1)$, $s\in(-1,\infty)$, $p,q\in[1,\infty]$, and initial data $f\in\dot{B}{p,q}{s}(\mathbb{R}{n})\cap\dot{B}{\infty,\infty}{-1+\epsilon}(\mathbb{R}{n})$, we prove that there exists a unique local solution $u\in\cap_{T'\in(0,T*f)}\left(Z{p,q}{s}(T',n)\cap Z_{\infty,\infty}{-1+\epsilon}(T',n)\right)$ which, along with its maximal existence time $T_{f}{*}\in(0,\infty]$, is independent of $\epsilon,s,p,q$. If $T_{f}{*}$ is finite, then we have the blow-up estimate (with explicit dependence on $\epsilon$) ${|u(t)|}{\dot{B}{\infty,\infty}{-1+\epsilon}(\mathbb{R}{n})}\gtrsim_{\varphi}\epsilon(1-\epsilon){(T_{f}{*}-t)}{-\epsilon/2}$ for all $t\in(0,T_{f}{*})$. The solution is unique among all solutions in the larger class $\cap_{T'\in(0,T_{f}{*})}\cup_{\alpha\in(2,\infty)}L{\alpha}(0,T';L{\infty}(\mathbb{R}{n}))$, and if $T_{f}{*}<\infty$ then $u\notin L{2}(0,T_{f}{*};L{\infty}(\mathbb{R}{n}))$. We also establish additional properties of the solution, depending on the Besov spaces to which the initial data belongs.

Summary

We haven't generated a summary for this paper yet.