Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the initial value problem for the Navier-Stokes equations with the initial datum in critical Sobolev and Besov spaces

Published 7 Jan 2016 in math.AP | (1601.01726v1)

Abstract: The existence of local unique mild solutions to the Navier-Stokes equations in the whole space with an initial tempered distribution datum in critical homogeneous or inhomogeneous Sobolev spaces is shown. Especially, the case when the integral-exponent is less than 2 is investigated. The global existence is also obtained for the initial datum in critical homogeneous Sobolev spaces with a norm small enough in suitable critical Besov spaces. The key lemma is to establish the bilinear estimates in these spaces, due to the point-wise decay of the kernel of the heat semigroup.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.