Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hamiltonian limit of lattice QED in 2+1 dimensions (2212.09627v1)

Published 19 Dec 2022 in hep-lat and quant-ph

Abstract: The Hamiltonian limit of lattice gauge theories can be found by extrapolating the results of anisotropic lattice computations, i.e., computations using lattice actions with different temporal and spatial lattice spacings ($a_t\neq a_s$), to the limit of $a_t\to 0$. In this work, we present a study of this Hamiltonian limit for a Euclidean $U(1)$ gauge theory in 2+1 dimensions (QED3), regularized on a toroidal lattice. The limit is found using the renormalized anisotropy $\xi_R=a_t/a_s$, by sending $\xi_R \to 0$ while keeping the spatial lattice spacing constant. We compute $\xi_R$ in $3$ different ways: using both the normal'' and thesideways'' static quark potential, as well as the gradient flow evolution of gauge fields. The latter approach will be particularly relevant for future investigations of combining quantum computations with classical Monte Carlo computations, which requires the matching of lattice results obtained in the Hamiltonian and Lagrangian formalisms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube