Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

"Zoology" of non-invertible duality defects: the view from class $\mathcal{S}$ (2212.09549v2)

Published 19 Dec 2022 in hep-th

Abstract: We study generalizations of the non-invertible duality defects present in $\mathcal{N} = 4$ SU(N) SYM by studying theories with larger duality groups. We focus on 4d $\mathcal{N} = 2$ theories of class $\mathcal{S}$ obtained by the dimensional reduction of the 6d $\mathcal{N} = (2, 0)$ theory of $A_{N-1}$ type on a Riemann surface $\Sigma_g$ without punctures. We discuss their non-invertible duality symmetries and provide two ways to compute their fusion algebra: either using discrete topological manipulations or a 5d TQFT description. We also introduce the concept of "rank" of a non-invertible duality symmetry and show how it can be used to (almost) completely fix the fusion algebra with little computational effort.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  2. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
  3. L. Bhardwaj, L. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible Higher-Categorical Symmetries,” arXiv:2204.06564 [hep-th].
  4. G. Arias-Tamargo and D. Rodriguez-Gomez, “Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum,” arXiv:2204.07523 [hep-th].
  5. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
  6. J. Kaidi, G. Zafrir, and Y. Zheng, “Non-invertible symmetries of 𝒩=4𝒩4\mathcal{N}{=}4caligraphic_N = 4 SYM and twisted compactification,” JHEP 08 (2022) 053, arXiv:2205.01104 [hep-th].
  7. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the Standard Model,” arXiv:2205.05086 [hep-th].
  8. C. Cordova and K. Ohmori, “Non-Invertible Chiral Symmetry and Exponential Hierarchies,” arXiv:2205.06243 [hep-th].
  9. A. Antinucci, G. Galati, and G. Rizi, “On Continuous 2-Category Symmetries and Yang-Mills Theory,” arXiv:2206.05646 [hep-th].
  10. V. Bashmakov, M. Del Zotto, and A. Hasan, “On the 6d Origin of Non-invertible Symmetries in 4d,” arXiv:2206.07073 [hep-th].
  11. J. A. Damia, R. Argurio, and L. Tizzano, “Continuous Generalized Symmetries in Three Dimensions,” arXiv:2206.14093 [hep-th].
  12. J. A. Damia, R. Argurio, and E. Garcia-Valdecasas, “Non-Invertible Defects in 5d, Boundaries and Holography,” arXiv:2207.02831 [hep-th].
  13. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Time-reversal Symmetry,” arXiv:2208.04331 [hep-th].
  14. L. Bhardwaj, S. Schafer-Nameki, and J. Wu, “Universal Non-Invertible Symmetries,” arXiv:2208.05973 [hep-th].
  15. L. Lin, D. G. Robbins, and E. Sharpe, “Decomposition, condensation defects, and fusion,” arXiv:2208.05982 [hep-th].
  16. T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, “Non-invertible Symmetries and Higher Representation Theory I,” arXiv:2208.05993 [hep-th].
  17. F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Non-Invertible Symmetries from Holography and Branes,” arXiv:2208.07373 [hep-th].
  18. I. n. García Etxebarria, “Branes and Non-Invertible Symmetries,” arXiv:2208.07508 [hep-th].
  19. J. J. Heckman, M. Hübner, E. Torres, and H. Y. Zhang, “The Branes Behind Generalized Symmetry Operators,” arXiv:2209.03343 [hep-th].
  20. P. Niro, K. Roumpedakis, and O. Sela, “Exploring Non-Invertible Symmetries in Free Theories,” arXiv:2209.11166 [hep-th].
  21. A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “The holography of non-invertible self-duality symmetries,” arXiv:2210.09146 [hep-th].
  22. S. Chen and Y. Tanizaki, “Solitonic symmetry beyond homotopy: invertibility from bordism and non-invertibility from TQFT,” arXiv:2210.13780 [hep-th].
  23. C. Cordova, S. Hong, S. Koren, and K. Ohmori, “Neutrino Masses from Generalized Symmetry Breaking,” arXiv:2211.07639 [hep-ph].
  24. I. n. García Etxebarria and N. Iqbal, “A Goldstone theorem for continuous non-invertible symmetries,” arXiv:2211.09570 [hep-th].
  25. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Gauss Law and Axions,” arXiv:2212.04499 [hep-th].
  26. R. Yokokura, “Non-invertible symmetries in axion electrodynamics,” arXiv:2212.05001 [hep-th].
  27. L. Bhardwaj, S. Schafer-Nameki, and A. Tiwari, “Unifying Constructions of Non-Invertible Symmetries,” arXiv:2212.06159 [hep-th].
  28. L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible Symmetry Webs,” arXiv:2212.06842 [hep-th].
  29. T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, “Non-invertible Symmetries and Higher Representation Theory II,” arXiv:2212.07393 [hep-th].
  30. N. Mekareeya and M. Sacchi, “Mixed Anomalies, Two-groups, Non-Invertible Symmetries, and 3d Superconformal Indices,” arXiv:2210.02466 [hep-th].
  31. E. P. Verlinde, “Fusion Rules and Modular Transformations in 2D Conformal Field Theory,” Nucl. Phys. B 300 (1988) 360–376.
  32. V. B. Petkova and J. B. Zuber, “Generalized twisted partition functions,” Phys. Lett. B 504 (2001) 157–164, arXiv:hep-th/0011021.
  33. C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, “Topological Defect Lines and Renormalization Group Flows in Two Dimensions,” JHEP 01 (2019) 026, arXiv:1802.04445 [hep-th].
  34. Z. Komargodski, K. Ohmori, K. Roumpedakis, and S. Seifnashri, “Symmetries and strings of adjoint QCD2,” JHEP 03 (2021) 103, arXiv:2008.07567 [hep-th].
  35. R. Thorngren and Y. Wang, “Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,” arXiv:1912.02817 [hep-th].
  36. R. Thorngren and Y. Wang, “Fusion Category Symmetry II: Categoriosities at c=1𝑐1c=1italic_c = 1 and Beyond,” arXiv:2106.12577 [hep-th].
  37. J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Kramers-Wannier duality from conformal defects,” Phys. Rev. Lett. 93 (2004) 070601, arXiv:cond-mat/0404051.
  38. J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Duality and defects in rational conformal field theory,” Nucl. Phys. B 763 (2007) 354–430, arXiv:hep-th/0607247.
  39. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
  40. J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141 [hep-th].
  41. D. Gaiotto, “N=2 dualities,” JHEP 08 (2012) 034, arXiv:0904.2715 [hep-th].
  42. Y. Tachikawa, “On the 6d origin of discrete additional data of 4d gauge theories,” JHEP 05 (2014) 020, arXiv:1309.0697 [hep-th].
  43. L. Bhardwaj, M. Hubner, and S. Schafer-Nameki, “1-form Symmetries of 4d N=2 Class S Theories,” SciPost Phys. 11 (2021) 096, arXiv:2102.01693 [hep-th].
  44. L. Bhardwaj, S. Giacomelli, M. Hübner, and S. Schäfer-Nameki, “Relative defects in relative theories: Trapped higher-form symmetries and irregular punctures in class S,” SciPost Phys. 13 no. 4, (2022) 101, arXiv:2201.00018 [hep-th].
  45. T. Breuer, Characters and automorphism groups of compact Riemann surfaces. No. 280. Cambridge University Press, 2000.
  46. D. S. Freed and C. Teleman, “Relative quantum field theory,” Commun. Math. Phys. 326 (2014) 459–476, arXiv:1212.1692 [hep-th].
  47. J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-Invertible Defects,” arXiv:2209.11062 [hep-th].
  48. P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 no. 3, (2019) 039, arXiv:1812.04716 [hep-th].
  49. V. Bashmakov, M. Del Zotto, A. Hasan, and J. Kaidi, “Non-invertible Symmetries of Class 𝒮𝒮\mathcal{S}caligraphic_S Theories,” arXiv:2211.05138 [hep-th].
  50. D. Gaiotto, G. W. Moore, and A. Neitzke, “Framed BPS States,” Adv. Theor. Math. Phys. 17 no. 2, (2013) 241–397, arXiv:1006.0146 [hep-th].
  51. O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of four-dimensional gauge theories,” JHEP 08 (2013) 115, arXiv:1305.0318 [hep-th].
  52. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
  53. L. Bhardwaj, Y. Lee, and Y. Tachikawa, “S⁢L⁢(2,ℤ)𝑆𝐿2ℤSL(2,\mathbb{Z})italic_S italic_L ( 2 , blackboard_Z ) action on QFTs with ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry and the Brown-Kervaire invariants,” JHEP 11 (2020) 141, arXiv:2009.10099 [hep-th].
  54. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  55. J. Kaidi, Z. Komargodski, K. Ohmori, S. Seifnashri, and S.-H. Shao, “Higher central charges and topological boundaries in 2+1-dimensional TQFTs,” arXiv:2107.13091 [hep-th].
  56. F. Benini, C. Copetti, and L. Di Pietro, “Factorization and global symmetries in holography,” arXiv:2203.09537 [hep-th].
  57. F. Apruzzi, F. Bonetti, I. n. G. Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].
  58. M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs for 3d QFTs from M-theory,” arXiv:2210.03703 [hep-th].
  59. I. Bah, F. Bonetti, and R. Minasian, “Discrete and higher-form symmetries in SCFTs from wrapped M5-branes,” JHEP 03 (2021) 196, arXiv:2007.15003 [hep-th].
  60. S. Monnier, “The anomaly field theories of six-dimensional (2,0) superconformal theories,” Adv. Theor. Math. Phys. 22 (2018) 2035–2089, arXiv:1706.01903 [hep-th].
  61. E. Witten, “Geometric Langlands From Six Dimensions,” arXiv:0905.2720 [hep-th].
  62. C. V. Johnson, “From M theory to F theory, with branes,” Nucl. Phys. B 507 (1997) 227–244, arXiv:hep-th/9706155.
  63. Springer, 2016.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube