Martingale Type, the Gamlen-Gaudet Construction and a Greedy Algorithm (2212.07804v3)
Abstract: In the present paper we identify those filtered probability spaces $(\Omega,\, \mathcal{F},\, \left(\mathcal{F}n\right),\, \mathbb{P})$ that determine already the martingale type of a Banach space $X$. We isolate intrinsic conditions on the filtration $(\mathcal{F}_n)$ of purely atomic $\sigma$-algebras which determine that the upper $\ellp$ estimates [ |f|{Lp(\Omega,\, X)}p\leq Cp\left( |\mathbb{E} f|\mathcal{F}0|p{Lp(\Omega,\, X)}+\sum_{n=1}{\infty} |\Delta_n f|p_{Lp(\Omega,\, X)}\right),\qquad f\in Lp(\Omega,X)] imply that the Banach space $X$ is of martingale type $p$. Our paper complements \mbox{G. Pisier's} investigation \cite{Pisier1975} and continues the work by S. Geiss and second named author in \cite{Geiss2008}.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.