Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Pre-training of Masked Language Model via Concept-based Curriculum Masking (2212.07617v1)

Published 15 Dec 2022 in cs.CL

Abstract: Masked LLMing (MLM) has been widely used for pre-training effective bidirectional representations, but incurs substantial training costs. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a LLM. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a carefully-designed linguistic difficulty criterion that evaluates the MLM difficulty of each token. Second, we construct a curriculum that gradually masks words related to the previously masked words by retrieving a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.

Citations (12)

Summary

We haven't generated a summary for this paper yet.