Conditional-mean Multiplicative Operator Models for Count Time Series (2212.05831v2)
Abstract: Multiplicative error models (MEMs) are commonly used for real-valued time series, but they cannot be applied to discrete-valued count time series as the involved multiplication would not preserve the integer nature of the data. Thus, the concept of a multiplicative operator for counts is proposed (as well as several specific instances thereof), which are then used to develop a kind of MEMs for count time series (CMEMs). If equipped with a linear conditional mean, the resulting CMEMs are closely related to the class of so-called integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models and might be used as a semi-parametric extension thereof. Important stochastic properties of different types of INGARCH-CMEM as well as relevant estimation approaches are derived, namely types of quasi-maximum likelihood and weighted least squares estimation. The performance and application are demonstrated with simulations as well as with two real-world data examples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.