Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Pseudo scalar dark matter in a generic U$(1)_X$ model (2212.04698v3)

Published 9 Dec 2022 in hep-ph

Abstract: We consider a $U(1)_X$ extension of the Standard Model~(SM), where the spontaneous breaking of $U(1)_X$ gauge group results in a pseudo scalar particle which is the proposed candidate for dark matter. In the model, we introduce three right-handed neutrinos~(RHNs) $N_Ri$ and two extra scalars $\Phi$, $\chi$, which are SM gauge singlets but charged under $U(1)_X$ gauge group. Right-handed neutrinos are required to have the model anomaly free and explain the neutrino oscillation data. The heaviest scalar breaks the $U(1)_X$ gauge symmetry and the other extra scalar gives a pseudo scalar DM candidate. A pseudo scalar dark matter~(DM) is an interesting candidate as it naturally evades the stringent direct detection bounds due to its coupling structure. We study the phenomenology of this pseudo-scalar DM while considering several theoretical and experimental constraints. We find that in our model, there is a feasible parameter space, which satisfies by the DM lifetime bound, relic and direct detection constraints while respecting the colliders and other bounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. K. Garrett and G. Duda, “Dark matter: A primer,” Advances in Astronomy 2011 (2011) 1–22. https://doi.org/10.1155%2F2011%2F968283.
  2. S. Profumo, K. Sigurdson, and L. Ubaldi, “Can we discover multi-component WIMP dark matter?,” JCAP 12 (2009) 016, arXiv:0907.4374 [hep-ph].
  3. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175.
  4. M. Bartelmann and P. Schneider, “Weak gravitational lensing,” Phys. Rept. 340 (2001) 291–472, arXiv:astro-ph/9912508.
  5. D. Clowe, A. Gonzalez, and M. Markevitch, “Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter,” Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273.
  6. D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, “The non-gravitational interactions of dark matter in colliding galaxy clusters,” Science 347 (2015) 1462–1465, arXiv:1503.07675 [astro-ph.CO].
  7. WMAP Collaboration, G. Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” Astrophys. J. Suppl. 208 (2013) 19, arXiv:1212.5226 [astro-ph.CO].
  8. Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
  9. M. Schumann, “Direct detection of WIMP dark matter: concepts and status,” Journal of Physics G: Nuclear and Particle Physics 46 no. 10, (Aug, 2019) 103003. https://doi.org/10.1088%2F1361-6471%2Fab2ea5.
  10. M. Lisanti, “Lectures on Dark Matter Physics,” in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 399–446. 2017. arXiv:1603.03797 [hep-ph].
  11. C. Gross, O. Lebedev, and T. Toma, “Cancellation mechanism for dark-matter–nucleon interaction,” Physical Review Letters 119 no. 19, (Nov, 2017) . https://doi.org/10.1103%2Fphysrevlett.119.191801.
  12. Y. Abe, T. Toma, and K. Tsumura, “Pseudo-nambu-goldstone dark matter from gauged u(1)b-l symmetry,” Journal of High Energy Physics 2020 no. 5, (May, 2020) . https://doi.org/10.1007%2Fjhep05%282020%29057.
  13. Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, “Pseudo-nambu-goldstone dark matter model inspired by grand unification,” Physical Review D 104 no. 3, (Aug, 2021) . https://doi.org/10.1103%2Fphysrevd.104.035011.
  14. S. Gola, S. Mandal, and N. Sinha, “ALP-portal majorana dark matter,” Int. J. Mod. Phys. A 37 no. 22, (2022) 2250131, arXiv:2106.00547 [hep-ph].
  15. N. Okada, D. Raut, and Q. Shafi, “Pseudo-goldstone dark matter in a gauged b−l𝑏𝑙b-litalic_b - italic_l extended standard model,” Physical Review D 103 no. 5, (Mar, 2021) . https://doi.org/10.1103%2Fphysrevd.103.055024.
  16. S. Oda, N. Okada, and D. suke Takahashi, “Classically conformal u(1)′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT extended standard model and higgs vacuum stability,” Physical Review D 92 no. 1, (Jul, 2015) . https://doi.org/10.1103%2Fphysrevd.92.015026.
  17. A. Das, N. Okada, S. Okada, and D. Raut, “Probing the seesaw mechanism at the 250 GeV ILC,” Physics Letters B 797 (Oct, 2019) 134849. https://doi.org/10.1016%2Fj.physletb.2019.134849.
  18. A. Das, S. Mandal, T. Nomura, and S. Shil, “Heavy majorana neutrino pair production from z‘ at hadron and lepton colliders,” Physical Review D 105 no. 9, (May, 2022) . https://doi.org/10.1103%2Fphysrevd.105.095031.
  19. A. Das, S. Oda, N. Okada, and D.-s. Takahashi, “Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds,” Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].
  20. N. Okada and S. Okada, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-portal right-handed neutrino dark matter in the minimal U(1)X𝑋{}_{X}start_FLOATSUBSCRIPT italic_X end_FLOATSUBSCRIPT extended Standard Model,” Phys. Rev. D 95 no. 3, (2017) 035025, arXiv:1611.02672 [hep-ph].
  21. P. Bandyopadhyay, E. J. Chun, and R. Mandal, “Implications of right-handed neutrinos in B−L𝐵𝐿B-Litalic_B - italic_L extended standard model with scalar dark matter,” Phys. Rev. D 97 no. 1, (2018) 015001, arXiv:1707.00874 [hep-ph].
  22. A. Das, S. Goswami, K. N. Vishnudath, and T. Nomura, “Constraining a general U(1)′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT inverse seesaw model from vacuum stability, dark matter and collider,” Phys. Rev. D 101 no. 5, (2020) 055026, arXiv:1905.00201 [hep-ph].
  23. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. B 67 (1977) 421–428.
  24. J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22 (1980) 2227.
  25. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
  26. J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D 25 (1982) 774.
  27. E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73 (2006) 077301, arXiv:hep-ph/0601225.
  28. M. Hirsch, R. A. Lineros, S. Morisi, J. Palacio, N. Rojas, and J. W. F. Valle, “WIMP dark matter as radiative neutrino mass messenger,” JHEP 10 (2013) 149, arXiv:1307.8134 [hep-ph].
  29. A. Merle, M. Platscher, N. Rojas, J. W. F. Valle, and A. Vicente, “Consistency of WIMP Dark Matter as radiative neutrino mass messenger,” JHEP 07 (2016) 013, arXiv:1603.05685 [hep-ph].
  30. I. M. Ávila, V. De Romeri, L. Duarte, and J. W. F. Valle, “Phenomenology of scotogenic scalar dark matter,” Eur. Phys. J. C 80 no. 10, (2020) 908, arXiv:1910.08422 [hep-ph].
  31. S. Mandal, R. Srivastava, and J. W. F. Valle, “The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability,” Phys. Lett. B 819 (2021) 136458, arXiv:2104.13401 [hep-ph].
  32. S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, “Dark matter as the origin of neutrino mass in the inverse seesaw mechanism,” Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
  33. A. Das, S. Gola, S. Mandal, and N. Sinha, “Two-component scalar and fermionic dark matter candidates in a generic U(1)X model,” Phys. Lett. B 829 (2022) 137117, arXiv:2202.01443 [hep-ph].
  34. N. Darvishi, M. Masouminia, and A. Pilaftsis, “Maximally symmetric three-higgs-doublet model,” Physical Review D 104 no. 11, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevd.104.115017.
  35. T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios,” The European Physical Journal C 80 no. 2, (Feb, 2020) . https://doi.org/10.1140%2Fepjc%2Fs10052-020-7655-x.
  36. K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur. Phys. J. C 72 (2012) 2093, arXiv:1205.3781 [hep-ph].
  37. A. Djouadi, “The anatomy of electroweak symmetry breaking,” Physics Reports 457 no. 1-4, (Feb, 2008) 1–216. https://doi.org/10.1016%2Fj.physrep.2007.10.004.
  38. ATLAS Collaboration, “Combination of searches for invisible Higgs boson decays with the ATLAS experiment,”.
  39. ATLAS Collaboration, M. Aaboud et al., “Combination of searches for invisible Higgs boson decays with the ATLAS experiment,” Phys. Rev. Lett. 122 no. 23, (2019) 231801, arXiv:1904.05105 [hep-ex].
  40. CMS Collaboration, A. M. Sirunyan et al., “Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Lett. B 793 (2019) 520–551, arXiv:1809.05937 [hep-ex].
  41. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
  42. M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, “New limits on the dark matter lifetime from dwarf spheroidal galaxies using fermi-LAT,” Physical Review D 93 no. 10, (May, 2016) . https://doi.org/10.1103%2Fphysrevd.93.103009.
  43. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, “micrOMEGAs5.0 : Freeze-in,” Comput. Phys. Commun. 231 (2018) 173–186, arXiv:1801.03509 [hep-ph].
  44. XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
  45. LUX-ZEPLIN Collaboration, D. S. Akerib et al., “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,” Phys. Rev. D 101 no. 5, (2020) 052002, arXiv:1802.06039 [astro-ph.IM].
  46. C. A. J. O’Hare, “New definition of the neutrino floor for direct dark matter searches,” Physical Review Letters 127 no. 25, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevlett.127.251802.
  47. K. Ishiwata and T. Toma, “Probing pseudo nambu-goldstone boson dark matter at loop level,” Journal of High Energy Physics 2018 no. 12, (Dec, 2018) . https://doi.org/10.1007%2Fjhep12%282018%29089.
  48. J. de Blas et al., “The CLIC Potential for New Physics,” arXiv:1812.02093 [hep-ph].
  49. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., “Search for the standard model Higgs boson at LEP,” Phys. Lett. B 565 (2003) 61–75, arXiv:hep-ex/0306033.
  50. Y. Wang, M. Berggren, and J. List, “ILD Benchmark: Search for Extra Scalars Produced in Association with a Z𝑍Zitalic_Z boson at s=500𝑠500\sqrt{s}=500square-root start_ARG italic_s end_ARG = 500 GeV,” arXiv:2005.06265 [hep-ex].
  51. ATLAS Collaboration, “A combination of measurements of Higgs boson production and decay using up to 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment,” 8, 2020.
  52. D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, “Fusing Vectors into Scalars at High Energy Lepton Colliders,” JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)