Pseudo scalar dark matter in a generic U$(1)_X$ model (2212.04698v3)
Abstract: We consider a $U(1)_X$ extension of the Standard Model~(SM), where the spontaneous breaking of $U(1)_X$ gauge group results in a pseudo scalar particle which is the proposed candidate for dark matter. In the model, we introduce three right-handed neutrinos~(RHNs) $N_Ri$ and two extra scalars $\Phi$, $\chi$, which are SM gauge singlets but charged under $U(1)_X$ gauge group. Right-handed neutrinos are required to have the model anomaly free and explain the neutrino oscillation data. The heaviest scalar breaks the $U(1)_X$ gauge symmetry and the other extra scalar gives a pseudo scalar DM candidate. A pseudo scalar dark matter~(DM) is an interesting candidate as it naturally evades the stringent direct detection bounds due to its coupling structure. We study the phenomenology of this pseudo-scalar DM while considering several theoretical and experimental constraints. We find that in our model, there is a feasible parameter space, which satisfies by the DM lifetime bound, relic and direct detection constraints while respecting the colliders and other bounds.
- K. Garrett and G. Duda, “Dark matter: A primer,” Advances in Astronomy 2011 (2011) 1–22. https://doi.org/10.1155%2F2011%2F968283.
- S. Profumo, K. Sigurdson, and L. Ubaldi, “Can we discover multi-component WIMP dark matter?,” JCAP 12 (2009) 016, arXiv:0907.4374 [hep-ph].
- G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175.
- M. Bartelmann and P. Schneider, “Weak gravitational lensing,” Phys. Rept. 340 (2001) 291–472, arXiv:astro-ph/9912508.
- D. Clowe, A. Gonzalez, and M. Markevitch, “Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter,” Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273.
- D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, “The non-gravitational interactions of dark matter in colliding galaxy clusters,” Science 347 (2015) 1462–1465, arXiv:1503.07675 [astro-ph.CO].
- WMAP Collaboration, G. Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” Astrophys. J. Suppl. 208 (2013) 19, arXiv:1212.5226 [astro-ph.CO].
- Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
- M. Schumann, “Direct detection of WIMP dark matter: concepts and status,” Journal of Physics G: Nuclear and Particle Physics 46 no. 10, (Aug, 2019) 103003. https://doi.org/10.1088%2F1361-6471%2Fab2ea5.
- M. Lisanti, “Lectures on Dark Matter Physics,” in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 399–446. 2017. arXiv:1603.03797 [hep-ph].
- C. Gross, O. Lebedev, and T. Toma, “Cancellation mechanism for dark-matter–nucleon interaction,” Physical Review Letters 119 no. 19, (Nov, 2017) . https://doi.org/10.1103%2Fphysrevlett.119.191801.
- Y. Abe, T. Toma, and K. Tsumura, “Pseudo-nambu-goldstone dark matter from gauged u(1)b-l symmetry,” Journal of High Energy Physics 2020 no. 5, (May, 2020) . https://doi.org/10.1007%2Fjhep05%282020%29057.
- Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, “Pseudo-nambu-goldstone dark matter model inspired by grand unification,” Physical Review D 104 no. 3, (Aug, 2021) . https://doi.org/10.1103%2Fphysrevd.104.035011.
- S. Gola, S. Mandal, and N. Sinha, “ALP-portal majorana dark matter,” Int. J. Mod. Phys. A 37 no. 22, (2022) 2250131, arXiv:2106.00547 [hep-ph].
- N. Okada, D. Raut, and Q. Shafi, “Pseudo-goldstone dark matter in a gauged b−l𝑏𝑙b-litalic_b - italic_l extended standard model,” Physical Review D 103 no. 5, (Mar, 2021) . https://doi.org/10.1103%2Fphysrevd.103.055024.
- S. Oda, N. Okada, and D. suke Takahashi, “Classically conformal u(1)′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT extended standard model and higgs vacuum stability,” Physical Review D 92 no. 1, (Jul, 2015) . https://doi.org/10.1103%2Fphysrevd.92.015026.
- A. Das, N. Okada, S. Okada, and D. Raut, “Probing the seesaw mechanism at the 250 GeV ILC,” Physics Letters B 797 (Oct, 2019) 134849. https://doi.org/10.1016%2Fj.physletb.2019.134849.
- A. Das, S. Mandal, T. Nomura, and S. Shil, “Heavy majorana neutrino pair production from z‘ at hadron and lepton colliders,” Physical Review D 105 no. 9, (May, 2022) . https://doi.org/10.1103%2Fphysrevd.105.095031.
- A. Das, S. Oda, N. Okada, and D.-s. Takahashi, “Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds,” Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].
- N. Okada and S. Okada, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-portal right-handed neutrino dark matter in the minimal U(1)X𝑋{}_{X}start_FLOATSUBSCRIPT italic_X end_FLOATSUBSCRIPT extended Standard Model,” Phys. Rev. D 95 no. 3, (2017) 035025, arXiv:1611.02672 [hep-ph].
- P. Bandyopadhyay, E. J. Chun, and R. Mandal, “Implications of right-handed neutrinos in B−L𝐵𝐿B-Litalic_B - italic_L extended standard model with scalar dark matter,” Phys. Rev. D 97 no. 1, (2018) 015001, arXiv:1707.00874 [hep-ph].
- A. Das, S. Goswami, K. N. Vishnudath, and T. Nomura, “Constraining a general U(1)′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT inverse seesaw model from vacuum stability, dark matter and collider,” Phys. Rev. D 101 no. 5, (2020) 055026, arXiv:1905.00201 [hep-ph].
- P. Minkowski, “μ→eγ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. B 67 (1977) 421–428.
- J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22 (1980) 2227.
- R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
- J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D 25 (1982) 774.
- E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73 (2006) 077301, arXiv:hep-ph/0601225.
- M. Hirsch, R. A. Lineros, S. Morisi, J. Palacio, N. Rojas, and J. W. F. Valle, “WIMP dark matter as radiative neutrino mass messenger,” JHEP 10 (2013) 149, arXiv:1307.8134 [hep-ph].
- A. Merle, M. Platscher, N. Rojas, J. W. F. Valle, and A. Vicente, “Consistency of WIMP Dark Matter as radiative neutrino mass messenger,” JHEP 07 (2016) 013, arXiv:1603.05685 [hep-ph].
- I. M. Ávila, V. De Romeri, L. Duarte, and J. W. F. Valle, “Phenomenology of scotogenic scalar dark matter,” Eur. Phys. J. C 80 no. 10, (2020) 908, arXiv:1910.08422 [hep-ph].
- S. Mandal, R. Srivastava, and J. W. F. Valle, “The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability,” Phys. Lett. B 819 (2021) 136458, arXiv:2104.13401 [hep-ph].
- S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, “Dark matter as the origin of neutrino mass in the inverse seesaw mechanism,” Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
- A. Das, S. Gola, S. Mandal, and N. Sinha, “Two-component scalar and fermionic dark matter candidates in a generic U(1)X model,” Phys. Lett. B 829 (2022) 137117, arXiv:2202.01443 [hep-ph].
- N. Darvishi, M. Masouminia, and A. Pilaftsis, “Maximally symmetric three-higgs-doublet model,” Physical Review D 104 no. 11, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevd.104.115017.
- T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios,” The European Physical Journal C 80 no. 2, (Feb, 2020) . https://doi.org/10.1140%2Fepjc%2Fs10052-020-7655-x.
- K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur. Phys. J. C 72 (2012) 2093, arXiv:1205.3781 [hep-ph].
- A. Djouadi, “The anatomy of electroweak symmetry breaking,” Physics Reports 457 no. 1-4, (Feb, 2008) 1–216. https://doi.org/10.1016%2Fj.physrep.2007.10.004.
- ATLAS Collaboration, “Combination of searches for invisible Higgs boson decays with the ATLAS experiment,”.
- ATLAS Collaboration, M. Aaboud et al., “Combination of searches for invisible Higgs boson decays with the ATLAS experiment,” Phys. Rev. Lett. 122 no. 23, (2019) 231801, arXiv:1904.05105 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Lett. B 793 (2019) 520–551, arXiv:1809.05937 [hep-ex].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
- M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, “New limits on the dark matter lifetime from dwarf spheroidal galaxies using fermi-LAT,” Physical Review D 93 no. 10, (May, 2016) . https://doi.org/10.1103%2Fphysrevd.93.103009.
- G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, “micrOMEGAs5.0 : Freeze-in,” Comput. Phys. Commun. 231 (2018) 173–186, arXiv:1801.03509 [hep-ph].
- XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
- LUX-ZEPLIN Collaboration, D. S. Akerib et al., “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,” Phys. Rev. D 101 no. 5, (2020) 052002, arXiv:1802.06039 [astro-ph.IM].
- C. A. J. O’Hare, “New definition of the neutrino floor for direct dark matter searches,” Physical Review Letters 127 no. 25, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevlett.127.251802.
- K. Ishiwata and T. Toma, “Probing pseudo nambu-goldstone boson dark matter at loop level,” Journal of High Energy Physics 2018 no. 12, (Dec, 2018) . https://doi.org/10.1007%2Fjhep12%282018%29089.
- J. de Blas et al., “The CLIC Potential for New Physics,” arXiv:1812.02093 [hep-ph].
- LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., “Search for the standard model Higgs boson at LEP,” Phys. Lett. B 565 (2003) 61–75, arXiv:hep-ex/0306033.
- Y. Wang, M. Berggren, and J. List, “ILD Benchmark: Search for Extra Scalars Produced in Association with a Z𝑍Zitalic_Z boson at s=500𝑠500\sqrt{s}=500square-root start_ARG italic_s end_ARG = 500 GeV,” arXiv:2005.06265 [hep-ex].
- ATLAS Collaboration, “A combination of measurements of Higgs boson production and decay using up to 139fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of pp𝑝𝑝ppitalic_p italic_p collision data at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment,” 8, 2020.
- D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, “Fusing Vectors into Scalars at High Energy Lepton Colliders,” JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.