Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Deep Deconvolution U-Net for Traffic Analyses with Distributed Acoustic Sensing (2212.03936v3)

Published 7 Dec 2022 in eess.SP

Abstract: Distributed Acoustic Sensing (DAS) that transforms city-wide fiber-optic cables into a large-scale strain sensing array has shown the potential to revolutionize urban traffic monitoring by providing a fine-grained, scalable, and low-maintenance monitoring solution. However, the real-world application of DAS is hindered by challenges such as noise contamination and interference among closely traveling cars. In response, we introduce a self-supervised U-Net model that can suppress background noise and compress car-induced DAS signals into high-resolution pulses through spatial deconvolution. Our work extends recent research by introducing three key advancements. Firstly, we perform a comprehensive resolution analysis of DAS-recorded traffic signals, laying a theoretical foundation for our approach. Secondly, we incorporate space-domain vehicle wavelets into our U-Net model, enabling consistent high-resolution outputs regardless of vehicle speed variations. Finally, we employ L-2 norm regularization in the loss function, enhancing our model's sensitivity to weaker signals from vehicles in remote traffic lanes. We evaluate the effectiveness and robustness of our method through field recordings under different traffic conditions and various driving speeds. Our results show that our method can enhance the spatial-temporal resolution and better resolve closely traveling cars. The spatial deconvolution U-Net model also enables the characterization of large-size vehicles to identify axle numbers and estimate the vehicle length. Monitoring large-size vehicles also benefits imaging deep earth by leveraging the surface waves induced by the dynamic vehicle-road interaction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.