Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training a Distributed Acoustic Sensing Traffic Monitoring Network With Video Inputs (2412.12743v1)

Published 17 Dec 2024 in physics.geo-ph, cs.CV, cs.LG, eess.SP, and physics.optics

Abstract: Distributed Acoustic Sensing (DAS) has emerged as a promising tool for real-time traffic monitoring in densely populated areas. In this paper, we present a novel concept that integrates DAS data with co-located visual information. We use YOLO-derived vehicle location and classification from camera inputs as labeled data to train a detection and classification neural network utilizing DAS data only. Our model achieves a performance exceeding 94% for detection and classification, and about 1.2% false alarm rate. We illustrate the model's application in monitoring traffic over a week, yielding statistical insights that could benefit future smart city developments. Our approach highlights the potential of combining fiber-optic sensors with visual information, focusing on practicality and scalability, protecting privacy, and minimizing infrastructure costs. To encourage future research, we share our dataset.

Summary

We haven't generated a summary for this paper yet.