Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Modular Structure and Inclusions of Twisted Araki-Woods Algebras (2212.02298v2)

Published 5 Dec 2022 in math.OA, math-ph, and math.MP

Abstract: In the general setting of twisted second quantization (including Bose/Fermi second quantization, $S$-symmetric Fock spaces, and full Fock spaces from free probability as special cases), von Neumann algebras on twisted Fock spaces are analyzed. These twisted Araki-Woods algebras $\mathcal{L}{T}(H)$ depend on the twist operator $T$ and a standard subspace $H$ in the one-particle space. Under a compatibility assumption on $T$ and $H$, it is proven that the Fock vacuum is cyclic and separating for $\mathcal{L}{T}(H)$ if and only if $T$ satisfies a standard subspace version of crossing symmetry and the Yang-Baxter equation (braid equation). In this case, the Tomita-Takesaki modular data are explicitly determined. Inclusions $\mathcal{L}{T}(K)\subset\mathcal{L}{T}(H)$ of twisted Araki-Woods algebras are analyzed in two cases: If the inclusion is half-sided modular and the twist satisfies a norm bound, it is shown to be singular. If the inclusion of underlying standard subspaces $K\subset H$ satisfies an $L2$-nuclearity condition, $\mathcal{L}{T}(K)\subset\mathcal{L}{T}(H)$ has type III relative commutant for suitable twists $T$. Applications of these results to localization of observables in algebraic quantum field theory are discussed.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.