Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The DOPE Distance is SIC: A Stable, Informative, and Computable Metric on Time Series And Ordered Merge Trees (2212.01648v1)

Published 3 Dec 2022 in cs.IR and math.AT

Abstract: Metrics for merge trees that are simultaneously stable, informative, and efficiently computable have so far eluded researchers. We show in this work that it is possible to devise such a metric when restricting merge trees to ordered domains such as the interval and the circle. We present the ``dynamic ordered persistence editing'' (DOPE) distance, which we prove is stable and informative while satisfying metric properties. We then devise a simple $O(N2)$ dynamic programming algorithm to compute it on the interval and an $O(N3)$ algorithm to compute it on the circle. Surprisingly, we accomplish this by ignoring all of the hierarchical information of the merge tree and simply focusing on a sequence of ordered critical points, which can be interpreted as a time series. Thus our algorithm is more similar to string edit distance and dynamic time warping than it is to more conventional merge tree comparison algorithms. In the context of time series with the interval as a domain, we show empirically on the UCR time series classification dataset that DOPE performs better than bottleneck/Wasserstein distances between persistence diagrams.

Summary

We haven't generated a summary for this paper yet.