Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Localization vs. Semantics: Visual Representations in Unimodal and Multimodal Models (2212.00281v2)

Published 1 Dec 2022 in cs.CV and cs.CL

Abstract: Despite the impressive advancements achieved through vision-and-language pretraining, it remains unclear whether this joint learning paradigm can help understand each individual modality. In this work, we conduct a comparative analysis of the visual representations in existing vision-and-LLMs and vision-only models by probing a broad range of tasks, aiming to assess the quality of the learned representations in a nuanced manner. Interestingly, our empirical observations suggest that vision-and-LLMs are better at label prediction tasks like object and attribute prediction, while vision-only models are stronger at dense prediction tasks that require more localized information. We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models. Code will be released at https://github.com/Lizw14/visual_probing

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com