The galaxy of Coxeter groups (2211.17038v3)
Abstract: In this paper we introduce the galaxy of Coxeter groups -- an infinite dimensional, locally finite, ranked simplicial complex which captures isomorphisms between Coxeter systems. In doing so, we would like to suggest a new framework to study the isomorphism problem for Coxeter groups. We prove some structural results about this space, provide a full characterization in small ranks and propose many questions. In addition we survey known tools, results and conjectures. Along the way we show profinite rigidity of triangle Coxeter groups -- a result which is possibly of independent interest.
- C. P. Bahls “Even rigidity in Coxeter groups” ProQuest LLC, Ann Arbor, MI, 2002, pp. 66
- N. Bourbaki “Lie groups and Lie algebras. Chapters 4–6”, Elements of Mathematics (Berlin) Springer-Verlag, Berlin, 2002, pp. xii+300 DOI: 10.1007/978-3-540-89394-3
- “Rigidity of Coxeter groups and Artin groups” In Geom. Dedicata 94, 2002, pp. 91–109 DOI: 10.1023/A:1020948811381
- M. R. Bridson, M. D. E. Conder and A. W. Reid “Determining Fuchsian groups by their finite quotients” In Israel J. Math. 214.1, 2016, pp. 1–41 DOI: 10.1007/s11856-016-1341-6
- “Artin-Gruppen und Coxeter-Gruppen” In Invent. Math. 17, 1972, pp. 245–271 DOI: 10.1007/BF01406235
- “Reflection rigidity of 2222-spherical Coxeter groups” In Proc. Lond. Math. Soc. (3) 94.2, 2007, pp. 520–542 DOI: 10.1112/plms/pdl015
- “Twist-rigid Coxeter groups” In Geom. Topol. 14.4, 2010, pp. 2243–2275 DOI: 10.2140/gt.2010.14.2243
- “Bipolar Coxeter groups” In J. Algebra 338, 2011, pp. 35–55 DOI: 10.1016/j.jalgebra.2011.05.007
- “When is a Coxeter system determined by its Coxeter group?” In J. London Math. Soc. (2) 61.2, 2000, pp. 441–461 DOI: 10.1112/S0024610799008583
- “Applications and adaptations of the low index subgroups procedure” In Math. Comp. 74.249, 2005, pp. 485–497 DOI: 10.1090/S0025-5718-04-01647-3
- M. W. Davis “Groups generated by reflections and aspherical manifolds not covered by Euclidean space” In Ann. of Math. (2) 117.2, 1983, pp. 293–324 DOI: 10.2307/2007079
- M. W. Davis “The geometry and topology of Coxeter groups” 32, Lond. Math. Soc. Monogr. Ser. Princeton, NJ: Princeton University Press, 2008
- V. V. Deodhar “On the root system of a Coxeter group” In Comm. Algebra 10.6, 1982, pp. 611–630 DOI: 10.1080/00927878208822738
- J. L. Dyer “Separating conjugates in free-by-finite groups” In J. London Math. Soc. (2) 20.2, 1979, pp. 215–221 DOI: 10.1112/jlms/s2-20.2.215
- “Genus for groups” In J. Algebra 326, 2011, pp. 130–168 DOI: 10.1016/j.jalgebra.2010.05.018
- R. B. Howlett and B. Mühlherr “Isomorphisms of Coxeter groups which do not preserve reflections” Unpublished preprint, 18 pages, 2004, pp. 18
- R. B. Howlett, B. Mühlherr and K. Nuida “Intrinsic reflections and strongly rigid Coxeter groups” In Proc. Lond. Math. Soc. (3) 116.3, 2018, pp. 534–574 DOI: 10.1112/plms.12090
- “A step towards twist conjecture” In Doc. Math. 23, 2018, pp. 2081–2100 DOI: 10.25537/dm.2018v23.2081-2100
- S. Hughes “Cohomology of Fuchsian groups and non-Euclidean crystallographic groups” In Manuscripta Math. 170.3-4, 2023, pp. 659–676 DOI: 10.1007/s00229-022-01369-z
- S. Katok “Fuchsian groups”, Chicago Lectures in Mathematics University of Chicago Press, Chicago, IL, 1992, pp. x+175
- M. W. Liebeck and A. Shalev “Fuchsian groups, finite simple groups and representation varieties” In Invent. Math. 159.2, 2005, pp. 317–367 DOI: 10.1007/s00222-004-0390-3
- “Angle-deformations in Coxeter groups” In Algebr. Geom. Topol. 8.4, 2008, pp. 2175–2208 DOI: 10.2140/agt.2008.8.2175
- M. Mihalik “The even isomorphism theorem for Coxeter groups” In Trans. Amer. Math. Soc. 359.9, 2007, pp. 4297–4324 DOI: 10.1090/S0002-9947-07-04133-5
- “Visual decompositions of Coxeter groups” In Groups Geom. Dyn. 3.1, 2009, pp. 173–198 DOI: 10.4171/GGD/53
- M. L. Mihalik and J. G. Ratcliffe “On the rank of a Coxeter group” In J. Group Theory 12.3, 2009, pp. 449–464 DOI: 10.1515/JGT.2008.089
- M. L. Mihalik, J. G. Ratcliffe and S. T. Tschantz “Matching theorems for systems of a finitely generated Coxeter group” In Algebr. Geom. Topol. 7, 2007, pp. 919–956 DOI: 10.2140/agt.2007.7.919
- B. Mühlherr “On isomorphisms between Coxeter groups” Special issue dedicated to Dr. Jaap Seidel on the occasion of his 80th birthday (Oisterwijk, 1999) In Des. Codes Cryptogr. 21.1-3, 2000, pp. 189 DOI: 10.1023/A:1008347930052
- B. Mühlherr “The isomorphism problem for Coxeter groups” In The Coxeter legacy Amer. Math. Soc., Providence, RI, 2006, pp. 1–15
- “Rigidity of skew-angled Coxeter groups” In Adv. Geom. 2.4, 2002, pp. 391–415 DOI: 10.1515/advg.2002.018
- P. S. Novikov “Ob algoritmičeskoĭ nerazrešimosti problemy toždestva slov v teorii grupp” In Trudy Mat. Inst. Steklov. 44 Izdat. Akad. Nauk SSSR, Moscow, 1955, pp. 3–143 URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1180
- K. Nuida “On the direct indecomposability of infinite irreducible Coxeter groups and the isomorphism problem for Coxeter groups” In Comm. Algebra 34.7, 2006, pp. 2559–2595 DOI: 10.1080/00927870600651281
- K. Nuida “On the isomorphism problem for Coxeter groups and related topics.” In Groups of exceptional type, Coxeter groups and related geometries. Invited articles based on the presentations at the international conference on “Groups and geometries”, Bangalore, India, December 10–21, 2012. New Delhi: Springer, 2014, pp. 217–238 DOI: 10.1007/978-81-322-1814-2˙12
- Ma. L. A. N. Peñas, R. P. Felix and E. D. B. Provido “On index 2 subgroups of hyperbolic symmetry groups” In Z. Kristallogr. 222.9, 2007, pp. 443–448 DOI: doi:10.1524/zkri.2007.222.9.443
- J. G. Ratcliffe and S. T. Tschantz “Chordal Coxeter groups.” In Geom. Dedicata 136, 2008, pp. 57–77 DOI: 10.1007/s10711-008-9274-9
- A. W. Reid “Profinite rigidity” In Proceedings of the International Congress of Mathematicians, Rio de Janeiro II World Sci. Publ., Hackensack, NJ, 2018, pp. 1193–1216 DOI: 10.1142/11060
- “Profinite groups” 40, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge Springer-Verlag, Berlin, 2010, pp. xvi+464 DOI: 10.1007/978-3-642-01642-4
- S. Roberts “Donald Coxeter: The man who saved geometry” [Online; accessed 05-Oct-2022], Toronto Live, https://www.math.toronto.edu/mpugh/Coxeter.pdf, 2003
- J.-P. Serre “Trees” Translated from the French by John Stillwell Springer-Verlag, Berlin-New York, 1980, pp. ix+142 DOI: 10.1007/978-3-642-61856-7
- C. J. Weigel “The twist conjecture for Coxeter groups without small triangle subgroups” In Innov. Incidence Geom. 12, 2011, pp. 111 –140 DOI: 10.2140/iig.2011.12.111
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.