Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The galaxy of Coxeter groups (2211.17038v3)

Published 30 Nov 2022 in math.GR

Abstract: In this paper we introduce the galaxy of Coxeter groups -- an infinite dimensional, locally finite, ranked simplicial complex which captures isomorphisms between Coxeter systems. In doing so, we would like to suggest a new framework to study the isomorphism problem for Coxeter groups. We prove some structural results about this space, provide a full characterization in small ranks and propose many questions. In addition we survey known tools, results and conjectures. Along the way we show profinite rigidity of triangle Coxeter groups -- a result which is possibly of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. C. P. Bahls “Even rigidity in Coxeter groups” ProQuest LLC, Ann Arbor, MI, 2002, pp. 66
  2. N. Bourbaki “Lie groups and Lie algebras. Chapters 4–6”, Elements of Mathematics (Berlin) Springer-Verlag, Berlin, 2002, pp. xii+300 DOI: 10.1007/978-3-540-89394-3
  3. “Rigidity of Coxeter groups and Artin groups” In Geom. Dedicata 94, 2002, pp. 91–109 DOI: 10.1023/A:1020948811381
  4. M. R. Bridson, M. D. E. Conder and A. W. Reid “Determining Fuchsian groups by their finite quotients” In Israel J. Math. 214.1, 2016, pp. 1–41 DOI: 10.1007/s11856-016-1341-6
  5. “Artin-Gruppen und Coxeter-Gruppen” In Invent. Math. 17, 1972, pp. 245–271 DOI: 10.1007/BF01406235
  6. “Reflection rigidity of 2222-spherical Coxeter groups” In Proc. Lond. Math. Soc. (3) 94.2, 2007, pp. 520–542 DOI: 10.1112/plms/pdl015
  7. “Twist-rigid Coxeter groups” In Geom. Topol. 14.4, 2010, pp. 2243–2275 DOI: 10.2140/gt.2010.14.2243
  8. “Bipolar Coxeter groups” In J. Algebra 338, 2011, pp. 35–55 DOI: 10.1016/j.jalgebra.2011.05.007
  9. “When is a Coxeter system determined by its Coxeter group?” In J. London Math. Soc. (2) 61.2, 2000, pp. 441–461 DOI: 10.1112/S0024610799008583
  10. “Applications and adaptations of the low index subgroups procedure” In Math. Comp. 74.249, 2005, pp. 485–497 DOI: 10.1090/S0025-5718-04-01647-3
  11. M. W. Davis “Groups generated by reflections and aspherical manifolds not covered by Euclidean space” In Ann. of Math. (2) 117.2, 1983, pp. 293–324 DOI: 10.2307/2007079
  12. M. W. Davis “The geometry and topology of Coxeter groups” 32, Lond. Math. Soc. Monogr. Ser. Princeton, NJ: Princeton University Press, 2008
  13. V. V. Deodhar “On the root system of a Coxeter group” In Comm. Algebra 10.6, 1982, pp. 611–630 DOI: 10.1080/00927878208822738
  14. J. L. Dyer “Separating conjugates in free-by-finite groups” In J. London Math. Soc. (2) 20.2, 1979, pp. 215–221 DOI: 10.1112/jlms/s2-20.2.215
  15. “Genus for groups” In J. Algebra 326, 2011, pp. 130–168 DOI: 10.1016/j.jalgebra.2010.05.018
  16. R. B. Howlett and B. Mühlherr “Isomorphisms of Coxeter groups which do not preserve reflections” Unpublished preprint, 18 pages, 2004, pp. 18
  17. R. B. Howlett, B. Mühlherr and K. Nuida “Intrinsic reflections and strongly rigid Coxeter groups” In Proc. Lond. Math. Soc. (3) 116.3, 2018, pp. 534–574 DOI: 10.1112/plms.12090
  18. “A step towards twist conjecture” In Doc. Math. 23, 2018, pp. 2081–2100 DOI: 10.25537/dm.2018v23.2081-2100
  19. S. Hughes “Cohomology of Fuchsian groups and non-Euclidean crystallographic groups” In Manuscripta Math. 170.3-4, 2023, pp. 659–676 DOI: 10.1007/s00229-022-01369-z
  20. S. Katok “Fuchsian groups”, Chicago Lectures in Mathematics University of Chicago Press, Chicago, IL, 1992, pp. x+175
  21. M. W. Liebeck and A. Shalev “Fuchsian groups, finite simple groups and representation varieties” In Invent. Math. 159.2, 2005, pp. 317–367 DOI: 10.1007/s00222-004-0390-3
  22. “Angle-deformations in Coxeter groups” In Algebr. Geom. Topol. 8.4, 2008, pp. 2175–2208 DOI: 10.2140/agt.2008.8.2175
  23. M. Mihalik “The even isomorphism theorem for Coxeter groups” In Trans. Amer. Math. Soc. 359.9, 2007, pp. 4297–4324 DOI: 10.1090/S0002-9947-07-04133-5
  24. “Visual decompositions of Coxeter groups” In Groups Geom. Dyn. 3.1, 2009, pp. 173–198 DOI: 10.4171/GGD/53
  25. M. L. Mihalik and J. G. Ratcliffe “On the rank of a Coxeter group” In J. Group Theory 12.3, 2009, pp. 449–464 DOI: 10.1515/JGT.2008.089
  26. M. L. Mihalik, J. G. Ratcliffe and S. T. Tschantz “Matching theorems for systems of a finitely generated Coxeter group” In Algebr. Geom. Topol. 7, 2007, pp. 919–956 DOI: 10.2140/agt.2007.7.919
  27. B. Mühlherr “On isomorphisms between Coxeter groups” Special issue dedicated to Dr. Jaap Seidel on the occasion of his 80th birthday (Oisterwijk, 1999) In Des. Codes Cryptogr. 21.1-3, 2000, pp. 189 DOI: 10.1023/A:1008347930052
  28. B. Mühlherr “The isomorphism problem for Coxeter groups” In The Coxeter legacy Amer. Math. Soc., Providence, RI, 2006, pp. 1–15
  29. “Rigidity of skew-angled Coxeter groups” In Adv. Geom. 2.4, 2002, pp. 391–415 DOI: 10.1515/advg.2002.018
  30. P. S. Novikov “Ob algoritmičeskoĭ nerazrešimosti problemy toždestva slov v teorii grupp” In Trudy Mat. Inst. Steklov. 44 Izdat. Akad. Nauk SSSR, Moscow, 1955, pp. 3–143 URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1180
  31. K. Nuida “On the direct indecomposability of infinite irreducible Coxeter groups and the isomorphism problem for Coxeter groups” In Comm. Algebra 34.7, 2006, pp. 2559–2595 DOI: 10.1080/00927870600651281
  32. K. Nuida “On the isomorphism problem for Coxeter groups and related topics.” In Groups of exceptional type, Coxeter groups and related geometries. Invited articles based on the presentations at the international conference on “Groups and geometries”, Bangalore, India, December 10–21, 2012. New Delhi: Springer, 2014, pp. 217–238 DOI: 10.1007/978-81-322-1814-2˙12
  33. Ma. L. A. N. Peñas, R. P. Felix and E. D. B. Provido “On index 2 subgroups of hyperbolic symmetry groups” In Z. Kristallogr. 222.9, 2007, pp. 443–448 DOI: doi:10.1524/zkri.2007.222.9.443
  34. J. G. Ratcliffe and S. T. Tschantz “Chordal Coxeter groups.” In Geom. Dedicata 136, 2008, pp. 57–77 DOI: 10.1007/s10711-008-9274-9
  35. A. W. Reid “Profinite rigidity” In Proceedings of the International Congress of Mathematicians, Rio de Janeiro II World Sci. Publ., Hackensack, NJ, 2018, pp. 1193–1216 DOI: 10.1142/11060
  36. “Profinite groups” 40, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge Springer-Verlag, Berlin, 2010, pp. xvi+464 DOI: 10.1007/978-3-642-01642-4
  37. S. Roberts “Donald Coxeter: The man who saved geometry” [Online; accessed 05-Oct-2022], Toronto Live, https://www.math.toronto.edu/mpugh/Coxeter.pdf, 2003
  38. J.-P. Serre “Trees” Translated from the French by John Stillwell Springer-Verlag, Berlin-New York, 1980, pp. ix+142 DOI: 10.1007/978-3-642-61856-7
  39. C. J. Weigel “The twist conjecture for Coxeter groups without small triangle subgroups” In Innov. Incidence Geom. 12, 2011, pp. 111 –140 DOI: 10.2140/iig.2011.12.111
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube