Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical evidence against advantage with quantum fidelity kernels on classical data (2211.16551v1)

Published 29 Nov 2022 in quant-ph and cs.LG

Abstract: Quantum machine learning techniques are commonly considered one of the most promising candidates for demonstrating practical quantum advantage. In particular, quantum kernel methods have been demonstrated to be able to learn certain classically intractable functions efficiently if the kernel is well-aligned with the target function. In the more general case, quantum kernels are known to suffer from exponential "flattening" of the spectrum as the number of qubits grows, preventing generalization and necessitating the control of the inductive bias by hyperparameters. We show that the general-purpose hyperparameter tuning techniques proposed to improve the generalization of quantum kernels lead to the kernel becoming well-approximated by a classical kernel, removing the possibility of quantum advantage. We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data. Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2011).
  2. A. Schmidhuber and S. Lloyd, arXiv:2209.14286  (2022).
  3. M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019), arXiv:1803.07128 .
  4. E. Peters and M. Schuld,   (2022), arXiv:2209.05523v1 .
  5. R. Shaydulin and S. M. Wild,  arXiv:2111.05451v3 .
  6. M. Cerezo and P. J. Coles, Quantum Science and Technology 6, 035006 (2021), arXiv:2008.07454 .
  7. F. Sauvage, M. Larocca, P. J. Coles,  and M. Cerezo, “Building spatial symmetries into parameterized quantum circuits for faster training,”  (2022), arXiv:2207.14413 .
  8. E. Farhi and H. Neven, arXiv:1802.06002  (2018), 10.48550/arXiv.1802.06002.
  9. M. Schuld, arXiv:2101.11020  (2021), 10.48550/arXiv.2101.11020.
  10. V. N. Vapnik, The Nature of Statistical Learning (Springer, 1996).
Citations (13)

Summary

We haven't generated a summary for this paper yet.