Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bandwidth Enables Generalization in Quantum Kernel Models (2206.06686v3)

Published 14 Jun 2022 in quant-ph and cs.LG

Abstract: Quantum computers are known to provide speedups over classical state-of-the-art machine learning methods in some specialized settings. For example, quantum kernel methods have been shown to provide an exponential speedup on a learning version of the discrete logarithm problem. Understanding the generalization of quantum models is essential to realizing similar speedups on problems of practical interest. Recent results demonstrate that generalization is hindered by the exponential size of the quantum feature space. Although these results suggest that quantum models cannot generalize when the number of qubits is large, in this paper we show that these results rely on overly restrictive assumptions. We consider a wider class of models by varying a hyperparameter that we call quantum kernel bandwidth. We analyze the large-qubit limit and provide explicit formulas for the generalization of a quantum model that can be solved in closed form. Specifically, we show that changing the value of the bandwidth can take a model from provably not being able to generalize to any target function to good generalization for well-aligned targets. Our analysis shows how the bandwidth controls the spectrum of the kernel integral operator and thereby the inductive bias of the model. We demonstrate empirically that our theory correctly predicts how varying the bandwidth affects generalization of quantum models on challenging datasets, including those far outside our theoretical assumptions. We discuss the implications of our results for quantum advantage in machine learning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Qiskit: An open-source framework for quantum computing. URL https://doi. org/10.5281/zenodo, 2562111, 2019. doi: 10.5281/zenodo.2562111.
  2. Statistical mechanics of complex neural systems and high dimensional data. Journal of Statistical Mechanics: Theory and Experiment, 2013(03):P03014, 2013. doi: 10.1088/1742-5468/2013/03/P03014.
  3. Generalization in quantum machine learning: A quantum information standpoint. PRX Quantum, 2(4), November 2021. doi: 10.1103/prxquantum.2.040321. URL https://doi.org/10.1103/prxquantum.2.040321.
  4. The curse of dimensionality for local kernel machines. Technical Report TR-1258, Université de Montréal, March 2005. URL https://www.microsoft.com/en-us/research/publication/the-curse-of-dimensionality-for-local-kernel-machines/.
  5. Spectrum dependent learning curves in kernel regression and wide neural networks. In International Conference on Machine Learning, pp. 1024–1034. PMLR, 2020. URL https://proceedings.mlr.press/v119/bordelon20a.html.
  6. Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks. Nature Communications, 12(1):1–12, 2021. doi: 10.1038/s41467-021-23103-1.
  7. Deep learning for classical Japanese literature. arXiv:1812.01718, 2018. doi: 10.20676/00000341.
  8. Random matrix techniques in quantum information theory. Journal of Mathematical Physics, 57(1):015215, January 2016. doi: 10.1063/1.4936880.
  9. Statistical mechanics of support vector networks. Physical Review Letters, 82(14):2975, 1999. doi: 10.1103/PhysRevLett.82.2975.
  10. Classification with quantum neural networks on near term processors. arXiv:1802.06002, 2018. doi: 10.48550/arXiv.1802.06002.
  11. Covariant quantum kernels for data with group structure. arXiv:2105.03406, 2021. doi: 10.48550/arXiv.2105.03406.
  12. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212, March 2019. doi: 10.1038/s41586-019-0980-2.
  13. Noisy quantum kernel machines. arXiv:2204.12192, 2022. doi: 10.48550/arXiv.2204.12192.
  14. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum, 3(1), January 2022. doi: 10.1103/prxquantum.3.010313.
  15. Power of data in quantum machine learning. Nature Communications, 12(1), May 2021. doi: 10.1038/s41467-021-22539-9.
  16. Training quantum embedding kernels on near-term quantum computers. arXiv:2105.02276, 2021. doi: 10.48550/arXiv.2105.02276.
  17. The inductive bias of quantum kernels. Advances in Neural Information Processing Systems, 34, 2021. URL https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf.
  18. Sublinear quantum algorithms for training linear and kernel-based classifiers. In International Conference on Machine Learning, pp. 3815–3824. PMLR, 2019.
  19. On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. arXiv:1908.10292, 2019. doi: 10.48550/arXiv.1908.10292.
  20. A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics, 17(9):1013–1017, July 2021. doi: 10.1038/s41567-021-01287-z.
  21. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1), November 2018. doi: 10.1038/s41467-018-07090-4.
  22. M. Mezard and A. Montanari. Information, Physics, and Computation. Oxford University Press, 2009. doi: 10.1093/acprof:oso/9780198570837.001.0001.
  23. Quantum circuit learning. Physical Review A, 98(3), September 2018. doi: 10.1103/physreva.98.032309.
  24. Quantum Computation and Quantum Information. Cambridge University Press, 2011. doi: 10.1017/CBO9780511976667.
  25. Machine learning of high dimensional data on a noisy quantum processor. npj Quantum Information, 7(1), November 2021. doi: 10.1038/s41534-021-00498-9.
  26. Symbolic integration with respect to the Haar measure on the unitary group. Bulletin of the Polish Academy of Sciences: Technical Sciences, 65(1):21–27, 2017. doi: 10.1515/bpasts-2017-0003.
  27. On learning with integral operators. Journal of Machine Learning Research, 11(30):905–934, 2010. URL http://jmlr.org/papers/v11/rosasco10a.html.
  28. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002. doi: 10.7551/mitpress/4175.001.0001.
  29. Maria Schuld. Supervised quantum machine learning models are kernel methods. arXiv:2101.11020, 2021. doi: 10.48550/arXiv.2101.11020.
  30. Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122(4), February 2019. doi: 10.1103/physrevlett.122.040504.
  31. Statistical mechanics of learning from examples. Physical Review A, 45:6056–6091, Apr 1992. doi: 10.1103/PhysRevA.45.6056.
  32. On the eigenspectrum of the Gram matrix and the generalization error of kernel-pca. IEEE Transactions on Information Theory, 51(7):2510–2522, 2005. doi: 10.1109/TIT.2005.850052.
  33. Importance of kernel bandwidth in quantum machine learning. arXiv:2111.05451, 2021. doi: 10.48550/arXiv.2111.05451.
  34. Temporally unstructured quantum computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465:1413–1439, 2009. doi: 10.1098/rspa.2008.0443.
  35. Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.
  36. Exponential concentration and untrainability in quantum kernel methods. arXiv:2208.11060, 2022.
  37. The photometric LSST astronomical time-series classification challenge (PLAsTiCC): Data set. arXiv:1810.00001, 2018. doi: 10.48550/arXiv.1810.00001.
  38. Towards understanding the power of quantum kernels in the NISQ era. Quantum, 5:531, August 2021. doi: 10.22331/q-2021-08-30-531. URL https://doi.org/10.22331/q-2021-08-30-531.
  39. John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. doi: 10.1017/9781316848142.
  40. Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Physical Review Research, 3(3), sep 2021. doi: 10.1103/physrevresearch.3.033221.
  41. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747, 2017. doi: 10.48550/arXiv.1708.07747.
  42. Gaussian initializations help deep variational quantum circuits escape from the barren plateau. arXiv:2203.09376, 2022. doi: 10.48550/arXiv.2203.09376.
Citations (37)

Summary

We haven't generated a summary for this paper yet.