Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain-Independent Dynamic Programming: Generic State Space Search for Combinatorial Optimization (2211.14409v2)

Published 26 Nov 2022 in cs.AI

Abstract: For combinatorial optimization problems, model-based approaches such as mixed-integer programming (MIP) and constraint programming (CP) aim to decouple modeling and solving a problem: the 'holy grail' of declarative problem solving. We propose domain-independent dynamic programming (DIDP), a new model-based paradigm based on dynamic programming (DP). While DP is not new, it has typically been implemented as a problem-specific method. We propose Dynamic Programming Description Language (DyPDL), a formalism to define DP models, and develop Cost-Algebraic A* Solver for DyPDL (CAASDy), a generic solver for DyPDL using state space search. We formalize existing problem-specific DP and state space search methods for combinatorial optimization problems as DP models in DyPDL. Using CAASDy and commercial MIP and CP solvers, we experimentally compare the DP models with existing MIP and CP models, showing that, despite its nascent nature, CAASDy outperforms MIP and CP on a number of common problem classes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.