Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unified Multimodal Model with Unlikelihood Training for Visual Dialog (2211.13235v1)

Published 23 Nov 2022 in cs.CL, cs.AI, and cs.CV

Abstract: The task of visual dialog requires a multimodal chatbot to answer sequential questions from humans about image content. Prior work performs the standard likelihood training for answer generation on the positive instances (involving correct answers). However, the likelihood objective often leads to frequent and dull outputs and fails to exploit the useful knowledge from negative instances (involving incorrect answers). In this paper, we propose a Unified Multimodal Model with UnLikelihood Training, named UniMM-UL, to tackle this problem. First, to improve visual dialog understanding and generation by multi-task learning, our model extends ViLBERT from only supporting answer discrimination to holding both answer discrimination and answer generation seamlessly by different attention masks. Specifically, in order to make the original discriminative model compatible with answer generation, we design novel generative attention masks to implement the autoregressive Masked LLMing (autoregressive MLM) task. And to attenuate the adverse effects of the likelihood objective, we exploit unlikelihood training on negative instances to make the model less likely to generate incorrect answers. Then, to utilize dense annotations, we adopt different fine-tuning methods for both generating and discriminating answers, rather than just for discriminating answers as in the prior work. Finally, on the VisDial dataset, our model achieves the best generative results (69.23 NDCG score). And our model also yields comparable discriminative results with the state-of-the-art in both single-model and ensemble settings (75.92 and 76.17 NDCG scores).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.