Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal resizable arrays (2211.11009v2)

Published 20 Nov 2022 in cs.DS

Abstract: A \emph{resizable array} is an array that can \emph{grow} and \emph{shrink} by the addition or removal of items from its end, or both its ends, while still supporting constant-time \emph{access} to each item stored in the array given its \emph{index}. Since the size of an array, i.e., the number of items in it, varies over time, space-efficient maintenance of a resizable array requires dynamic memory management. A standard doubling technique allows the maintenance of an array of size~$N$ using only $O(N)$ space, with $O(1)$ amortized time, or even $O(1)$ worst-case time, per operation. Sitarski and Brodnik et al.\ describe much better solutions that maintain a resizable array of size~$N$ using only $N+O(\sqrt{N})$ space, still with $O(1)$ time per operation. Brodnik et al.\ give a simple proof that this is best possible. We distinguish between the space needed for \emph{storing} a resizable array, and accessing its items, and the \emph{temporary} space that may be needed while growing or shrinking the array. For every integer $r\ge 2$, we show that $N+O(N{1/r})$ space is sufficient for storing and accessing an array of size~$N$, if $N+O(N{1-1/r})$ space can be used briefly during grow and shrink operations. Accessing an item by index takes $O(1)$ worst-case time while grow and shrink operations take $O(r)$ amortized time. Using an exact analysis of a \emph{growth game}, we show that for any data structure from a wide class of data structures that uses only $N+O(N{1/r})$ space to store the array, the amortized cost of grow is $\Omega(r)$, even if only grow and access operations are allowed. The time for grow and shrink operations cannot be made worst-case, unless $r=2$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.