Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 21 tok/s Pro
GPT-4o 90 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Using Human Perception to Regularize Transfer Learning (2211.07885v1)

Published 15 Nov 2022 in cs.CV and cs.LG

Abstract: Recent trends in the machine learning community show that models with fidelity toward human perceptual measurements perform strongly on vision tasks. Likewise, human behavioral measurements have been used to regularize model performance. But can we transfer latent knowledge gained from this across different learning objectives? In this work, we introduce PERCEP-TL (Perceptual Transfer Learning), a methodology for improving transfer learning with the regularization power of psychophysical labels in models. We demonstrate which models are affected the most by perceptual transfer learning and find that models with high behavioral fidelity -- including vision transformers -- improve the most from this regularization by as much as 1.9\% Top@1 accuracy points. These findings suggest that biologically inspired learning agents can benefit from human behavioral measurements as regularizers and psychophysical learned representations can be transferred to independent evaluation tasks.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube