Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Learning predictive checklists from continuous medical data (2211.07076v1)

Published 14 Nov 2022 in cs.LG

Abstract: Checklists, while being only recently introduced in the medical domain, have become highly popular in daily clinical practice due to their combined effectiveness and great interpretability. Checklists are usually designed by expert clinicians that manually collect and analyze available evidence. However, the increasing quantity of available medical data is calling for a partially automated checklist design. Recent works have taken a step in that direction by learning predictive checklists from categorical data. In this work, we propose to extend this approach to accomodate learning checklists from continuous medical data using mixed-integer programming approach. We show that this extension outperforms a range of explainable machine learning baselines on the prediction of sepsis from intensive care clinical trajectories.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.