Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing Learned Video Compression with In-loop Frame Prediction (2211.07004v3)

Published 13 Nov 2022 in eess.IV and cs.CV

Abstract: Recent years have witnessed an increasing interest in end-to-end learned video compression. Most previous works explore temporal redundancy by detecting and compressing a motion map to warp the reference frame towards the target frame. Yet, it failed to adequately take advantage of the historical priors in the sequential reference frames. In this paper, we propose an Advanced Learned Video Compression (ALVC) approach with the in-loop frame prediction module, which is able to effectively predict the target frame from the previously compressed frames, without consuming any bit-rate. The predicted frame can serve as a better reference than the previously compressed frame, and therefore it benefits the compression performance. The proposed in-loop prediction module is a part of the end-to-end video compression and is jointly optimized in the whole framework. We propose the recurrent and the bi-directional in-loop prediction modules for compressing P-frames and B-frames, respectively. The experiments show the state-of-the-art performance of our ALVC approach in learned video compression. We also outperform the default hierarchical B mode of x265 in terms of PSNR and beat the slowest mode of the SSIM-tuned x265 on MS-SSIM. The project page: https://github.com/RenYang-home/ALVC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ren Yang (25 papers)
  2. Radu Timofte (299 papers)
  3. Luc Van Gool (570 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub