Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coherent Equalization of Linear Quantum Systems (2211.06003v2)

Published 11 Nov 2022 in eess.SY, cs.SY, math.OC, and quant-ph

Abstract: This paper introduces a $H_\infty$-like methodology of coherent filtering for equalization of passive linear quantum systems to help mitigate degrading effects of quantum communication channels. For such systems, which include a wide range of linear quantum optical devices and signals, we seek to find a near optimal equalizing filter which is itself a passive quantum system. The problem amounts to solving an optimization problem subject to constraints dictated by the requirement for the equalizer to be physically realizable. By formulating these constraints in the frequency domain, we show that the problem admits a convex $H_\infty$-like formulation. This allows us to derive a set of suboptimal coherent equalizers using $J$-spectral factorization. An additional semidefinite relaxation combined with the Nevanlinna-Pick interpolation is shown to lead to a tractable algorithm for the design of a near optimal coherent equalizer.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Interpolation of rational matrix functions. Birkhäuser, Basel, 1990.
  2. Linear matrix inequality formulation of spectral mask constraints with applications to FIR filter design. IEEE Transactions on Signal Processing, 50(11):2702–2715, 2002.
  3. The Nevanlinna-Pick problem for matrix-valued functions. SIAM Journal on Applied Mathematics, 36(1):47–61, 1979.
  4. Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem. Pacific Journal of Mathematics, 12(4):1241–1250, 1962.
  5. Linear control theory with an 𝐇∞subscript𝐇\mathbf{H}_{\infty}bold_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT optimality criterion. SIAM Journal on Control and Optimization, 25(4):815–844, 1987.
  6. C. W. Gardiner and P. Zoller. Quantum Noise. Springer-Verlag, Heidelberg, 2000.
  7. Spectral factorization of matrix-valued functions using interpolation theory. IEEE Transactions on Circuits and Systems, 36(4):568–574, 1989.
  8. Squeezing components in linear quantum feedback networks. Physical Review A, 81(2):023804, 2010.
  9. A J𝐽{J}italic_J-spectral factorization approach to ℋ∞subscriptℋ\mathscr{H}_{\infty}script_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control. SIAM Journal on Control and Optimization, 28(6):1350–1371, 1990.
  10. Indefinite-quadratic estimation and control: A unified approach to H2superscript𝐻2H^{2}italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT theories. SIAM, Philadelphia, 1999.
  11. R. A. Horn and F. Zhang. Basic properties of the Schur complement. In The Schur Complement and Its Applications, pages 17–46. Springer, 2005.
  12. Quantum Ito’s formula and stochastic evolutions. Communications in Mathematical Physics, 93(3):301–323, 1984.
  13. V. Ionescu and C. Oara. The four-block Nehari problem: A generalized Popov-Yakubovich-type approach. IMA Journal of Mathematical Control and Information, 13(2):173–194, 1996.
  14. H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 53(8):1787–1803, 2008.
  15. Quantum dissipative systems and feedback control design by interconnection. IEEE Transactions on Automatic Control, 55(8):1806 –1821, 2010.
  16. I. V. Kovalishina. Analytic theory of a class of interpolation problems. Mathematics of the USSR-Izvestiya, 22(3):419–463, 1984.
  17. Bounded real properties for a class of annihilation-operator linear quantum systems. IEEE Transactions on Automatic Control, 56(4):786–801, 2011.
  18. Coherent H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control for a class of annihilation operator linear quantum systems. IEEE Transactions on Automatic Control, 56(2):309–319, 2011.
  19. H. I. Nurdin. On synthesis of linear quantum stochastic systems by pure cascading. IEEE Transactions on Automatic Control, 55(10):2439–2444, 2010.
  20. H. I. Nurdin and N. Yamamoto. Linear Dynamical Quantum Systems. Springer, 2017.
  21. K. R. Parthasarathy. An introduction to quantum stochastic calculus. Birkhäuser, 2012.
  22. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Transactions on Automatic Control, 57(8):2033–2044, 2012.
  23. U. Shaked. H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-minimum error state estimation of linear stationary processes. IEEE Transactions on Automatic Control, 35(5):554–558, 1990.
  24. Continuous-time channel gain control for minimum-information Kalman-Bucy filtering. arXiv:2202.02880.
  25. V. Ugrinovskii and M. R. James. Active versus passive coherent equalization of passive linear quantum systems. In Proc. 58th IEEE CDC, Nice, France, December 2019. arXiv:1910.06462.
  26. V. Ugrinovskii and M. R. James. Wiener filtering for passive linear quantum systems. In American Control Conference, Philadelphia, PA, July 10-12 2019. arXiv:1901.09494.
  27. Coherent quantum filtering for physically realizable linear quantum plants. In 2013 European Control Conference (ECC), pages 2717–2723, 2013.
  28. How many quantum noises need to be added to make an LTI system physically realizable? In 2011 Australian Control Conference, pages 363–367, 2011.
  29. Quantum optics. Springer, 2008.
  30. N. Wiener. The extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York, 1949.
  31. Quantum Measurement and Control. Cambridge University Press, 2009.
  32. FIR filter design via spectral factorization and convex optimization. In Applied and Computational Control, Signals, and Circuits, pages 215–245. Springer, 1999.
  33. K. Yosida. Functional Analysis. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1965.
  34. D. Youla. On the factorization of rational matrices. IRE Transactions on Information Theory, 7(3):172–189, 1961.
  35. The eigenvalue distribution of block diagonally dominant matrices and block H-matrices. The Electronic Journal of Linear Algebra, 20:621–639, 2010.
  36. G. Zhang and M. R James. On the response of quantum linear systems to single photon input fields. IEEE Transactions on Automatic Control, 58(5):1221–1235, 2013.
  37. Robust and optimal control. Prentice Hall, New Jersey, 1996.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com