Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design of Coherent Passive Quantum Equalizers Using Robust Control Theory (2308.15805v2)

Published 30 Aug 2023 in math.OC, cs.SY, eess.SY, and quant-ph

Abstract: The paper develops a methodology for the design of coherent equalizing filters for quantum communication channels. Given a linear quantum system model of a quantum communication channel, the aim is to obtain another quantum system which, when coupled with the original system, mitigates degrading effects of the environment. The main result of the paper is a systematic equalizer synthesis algorithm which relies on methods of state-space robust control design via semidefinite programming.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. D. O. Anderson. An algebraic solution to the spectral factorization problem. IEEE Transactions on Automatic Control, 12(4):410–414, 1967.
  2. Interpolation of rational matrix functions. Birkhäuser, Basel, 1990.
  3. Mixed-projection conic optimization: A new paradigm for modeling rank constraints. Operations Research, 70(6):3321–3344, 2022.
  4. Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM Studies in applied mathematics. SIAM, 1994.
  5. Spectral factorization with imaginary-axis zeros. Linear Algebra and its Applications, 250:225–252, 1997.
  6. G. E. Dullerud and F. Paganini. A Course in Robust Control Theory: A Convex Approach, volume 36 of Texts in Applied Mathematics. Springer-Verlag, NY, 2000.
  7. Squeezing components in linear quantum feedback networks. Physical Review A, 81(2):023804, 2010.
  8. J. E. Gough and G. Zhang. On realization theory of quantum linear systems. Automatica, 59:139–151, 2015.
  9. Indefinite-quadratic estimation and control: A unified approach to H2superscript𝐻2H^{2}italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT theories. SIAM, Philadelphia, 1999.
  10. R. A. Horn and F. Zhang. Basic properties of the Schur complement. In The Schur Complement and Its Applications, pages 17–46. Springer, 2005.
  11. H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 53(8):1787–1803, 2008.
  12. T. Kailath. Lectures on Wiener and Kalman filtering. Springer, 1981.
  13. Linear estimation. Prentice Hall, Upper Saddle River, NJ, 2000.
  14. Bounded real properties for a class of annihilation-operator linear quantum systems. IEEE Transactions on Automatic Control, 56(4):786–801, 2011.
  15. Coherent observers for linear quantum stochastic systems. Automatica, 71:264–271, 2016.
  16. Y. E. Nesterov and A. Nemirovsky. Interior Point Polynomial Methods in Convex Programming. SIAM, Philadelphia, PA, 1994.
  17. H. I. Nurdin. On synthesis of linear quantum stochastic systems by pure cascading. IEEE Transactions on Automatic Control, 55(10):2439–2444, 2010.
  18. Network synthesis of linear dynamical quantum stochastic systems. SIAM Journal on Control and Optimization, 48(4):2686–2718, 2009.
  19. H. I. Nurdin and N. Yamamoto. Linear Dynamical Quantum Systems. Springer, 2017.
  20. K. R. Parthasarathy. An introduction to quantum stochastic calculus. Birkhäuser, 2012.
  21. A. Rantzer. On the Kalman–Yakubovich–Popov lemma. Systems & Control Letters, 28(1):7 – 10, 1996.
  22. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Transactions on Automatic Control, 57(8):2033–2044, 2012.
  23. U. Shaked. H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-minimum error state estimation of linear stationary processes. IEEE Transactions on Automatic Control, 35(5):554–558, 1990.
  24. V. Ugrinovskii and M. R. James. Active versus passive coherent equalization of passive linear quantum systems. In Proc. 58th IEEE CDC, Nice, France, December 2019. arXiv:1910.06462.
  25. V. Ugrinovskii and M. R. James. Wiener filtering for passive linear quantum systems. In American Control Conference, Philadelphia, PA, July 10-12 2019. arXiv:1901.09494.
  26. V. Ugrinovskii and M. R. James. Coherent equalization of linear quantum systems. Automatica, 2022. (submitted, under review). arXiv:2211.06003.
  27. Coherent quantum filtering for physically realizable linear quantum plants. In 2013 European Control Conference (ECC), pages 2717–2723, 2013.
  28. S. L. Vuglar and H. Amini. Design of coherent quantum observers for linear quantum systems. New Journal of Physics, 16(12):125005, 2014.
  29. Quantum optics. Springer, 2008.
  30. N. Wiener. The extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York, 1949.
  31. Quantum Measurement and Control. Cambridge University Press, 2009.
  32. V. A. Yakubovich. A frequency theorem for the case in which the state and control spaces are Hilbert spaces, with an application to some problems in the synthesis of optimal controls. I. Siberian Mathematical Journal, 15(3):457–476, 1974.
  33. D. Youla. On the factorization of rational matrices. IRE Transactions on Information Theory, 7(3):172–189, 1961.
  34. G. Zhang and M. R James. On the response of quantum linear systems to single photon input fields. IEEE Transactions on Automatic Control, 58(5):1221–1235, 2013.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com