Drinfeld Centers and Morita Equivalence Classes of Fusion 2-Categories (2211.04917v4)
Abstract: We prove that the Drinfeld center of a fusion 2-category is invariant under Morita equivalence. We go on to show that the concept of Morita equivalence between connected fusion 2-categories recovers exactly the notion of Witt equivalence between braided fusion 1-categories. A strongly fusion 2-category is a fusion 2-category whose braided fusion 1-category of endomorphisms of the monoidal unit is $\mathbf{Vect}$ or $\mathbf{SVect}$. We prove that every fusion 2-category is Morita equivalent to the 2-Deligne tensor product of a strongly fusion 2-category and an invertible fusion 2-category. We proceed to show that every fusion 2-category is Morita equivalent to a connected fusion 2-category. As a consequence, we find that every rigid algebra in a fusion 2-category is separable. This implies in particular that every fusion 2-category is separable. Conjecturally, separability ensures that a fusion 2-category is 4-dualizable. We define the dimension of a fusion 2-category, and prove that it is always non-zero. Finally, we show that the Drinfeld center of any fusion 2-category is a finite semisimple 2-category.
- Higher‐dimensional algebra and topological quantum field theory. Journal of Mathematical Physics, 36(11):6073–6105, 1995. arXiv:q-alg/9503002.
- On dualizability of braided tensor categories. Compositio Mathematica, 3:435–483, 2021. arXiv:1804.07538.
- Higher-dimensional algebra I: Braided monoidal 2-categories. Advances in Mathematics, 121:196–244, 1995. arXiv:q-alg/9511013.
- Invariants of piecewise-linear 3-manifolds. Trans. Amer. Math. Soc., 348(10):3997–4022, 1996. arXiv:hep-th/9311155.
- Sjoerd E. Crans. Generalized centers of braided and sylleptic monoidal 2-categories. Advances in Mathematics, 136:183–223, 1998.
- Thibault D. Décoppet. The 2-Deligne tensor product, 2021. To appear in Kyoto J. Math., arXiv:2103.16880.
- Thibault D. Décoppet. Compact semisimple 2-categories, 2021. arXiv:2111.09080.
- Thibault D. Décoppet. Finite semisimple module 2-categories, 2021. arXiv:2107.11037.
- Thibault D. Décoppet. Multifusion categories and finite semisimple 2-categories. Journal of Pure and Applied Algebra, 226(8):107029, 2022. arXiv:2012.15774.
- Thibault D. Décoppet. Weak fusion 2-categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LXIII(1):3–24, 2022. arXiv:2103.15150.
- Thibault D. Décoppet. The Morita theory of fusion 2-categories. Higher Structures, 7(1):234–292, 2023. arXiv:2208.08722.
- Thibault D. Décoppet. On Fusion 2-Categories. PhD thesis, University of Oxford, 2023.
- Thibault D. Décoppet. Rigid and separable algebras in fusion 2-categories. Advances in Mathematics, 419:108967, 2023. arXiv:2205.06453.
- Pierre Deligne. Catégories tensorielles. Mosc. Math. J., 2(2):227–248, 2002.
- On braided fusion categories I. Selecta Mathematica, 16:1–119, 2010. arXiv:0906.0620.
- The Witt group of non-degenerate braided fusion categories. J. für die Reine und Angew. Math., 2013(667), 2013. arXiv:1009.2117.
- Braided Picard groups and graded extensions of braided tensor categories. Selecta Mathematica, 27(65), 2021. arXiv:2006.08022.
- On the structure of the Witt group of braided fusion categories. Selecta Mathematica, 19:237–269, 2013. arXiv:1109.5558.
- Fusion 2-categories and a state-sum invariant for 4-manifolds, 2018. arXiv:1812.11933.
- Vladimir Drinfeld. Quantum groups. Proceedings of the International Congress of Mathematicians, Berkeley, page 798–820, 1987.
- Monoidal bicategories and Hopf algebroids. Advances in Mathematics, 129(AI971649):99–157, 1997.
- Dualizable tensor categories. Mem. Amer. Math. Soc. AMS, 2021. arXiv:1312.7188.
- On fusion categories. Annals of Mathematics, 162:581–642, 2005. arXiv: math/0203060.
- Fusion categories and homotopy theory. Quantum Topology, 1(3), 2009. arXiv:0909.3140.
- Weakly group-theoretical and solvable fusion categories. Advances in Mathematics, 226(1):176–205, 2011. arXiv:0809.3031.
- Dennis Gaitsgory. Sheaves of categories and the notion of 1-affineness. In Stacks and Categories in Geometry, Topology, and Algebra, volume 643 of Contemporary Mathematics, pages 127–226. AMS, 2012. arXiv:1306.4304.
- César Galindo. Coherence for monoidal G𝐺Gitalic_G-categories and braided G𝐺Gitalic_G-crossed categories. Journal of Algebra, 487:118–137, 2017. arXiv:1604.01679.
- Condensations in higher categories, 2019. arXiv: 1905.09566v2.
- Symmetry protected topological phases and generalized cohomology. JHEP, 2019(7), 2019. arXiv:1712.07950.
- Justin Greenough. Monoidal 2-structure of bimodule categories. Journal of Algebra, 324(8):1818–1859, 2010. arXiv:0911.4979.
- Enriched categories as a free cocompletion. Advances in Mathematics, 289:1–94, 2016. arXiv:1301.3191v2.
- Nick Gurski. Coherence in Three-Dimensional Category Theory. Cambridge Tracts in Mathematics. Cambridge University Press, 2013.
- Cohomology of group extensions. Trans. Amer. Math. Soc., 74:110–134, 1953.
- Theo Johnson-Freyd. A 4D TQFT which is not (quite) a higher-form gauge theory. In preparation.
- Theo Johnson-Freyd. (3+1)d topological orders with only a ℤ/2ℤ2\mathds{Z}/2blackboard_Z / 2-charged particle, 2021. arXiv:2011.11165v1.
- Theo Johnson-Freyd. On the classification of topological orders. Commun. Math. Phys., 2022. arXiv:2003.06663.
- Minimal non-degenerate extensions. Jour. Amer. Math. Soc., 2023. arXiv:2105.15167.
- (Op)lax natural transformations, twisted quantum field theories, and ”even higher” Morita categories. Advances in Mathematics, 307(2):147–223, 2017. arXiv:1502.06526v3.
- Fusion 2-categories with no line operators are grouplike. Bull. Aust. Math. Soc., 104(3):434–442, 2021. arXiv:2010.07950.
- Tortile yang-baxter operators in tensor categories. Journal of Pure and Applied Algebra, 71(1):43–51, 1991.
- Alexandre Kirillov Jr. Modular categories and orbifold models II, 2001. arXiv:math/0110221.
- The center of monoidal 2-categories in 3+1D Dijkgraaf-Witten theory. Advances in Mathematics, 360(106928), 2020. arXiv:1905.04644.
- Robert Laugwitz. The relative monoidal center and tensor products of monoidal categories. Comm. Contemp. Math., 22(8), 2020. arXiv:1803.04403.
- Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries. Commun. Math. Phys., 351(2):709–739, 2017.
- Jacob Lurie. On the classification of topological field theories. Curr. Dev. Math., 1:129–280, 2010.
- Shahn Majid. Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Math. Palermo, 26(2):197–206, 1991.
- Michael Müger. From subfactors to categories and topology II. the quantum double of tensor categories and subfactors. Journal of Pure and Applied Algebra, 180(1-2):159–219, 2003. arXiv:math/0111205.
- Michael Müger. Galois extensions of braided tensor categories and braided crossed G𝐺Gitalic_G-categories. Journal of Algebra, 277(1):256–281, 2004. arXiv:math/0209093.
- Dmitri Nikshych. Private communication.
- Dmitri Nikshych. Computing the group of minimal non-degenerate extensions of a super-Tannakian category. Commun. Math. Phys., 2022. arXiv:2201.04076.
- Hans Opolka. Group extensions and group cohomology II. Journal of Algebra, 169:328–331, 1994.
- Victor Ostrik. Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not., 27:1507–1520, 2003. arXiv:math/0202130.
- Victor Ostrik. Module categories, weak Hopf algebras and modular invariants. Transformation Groups, 8:177–206, 2003. arXiv:math/01111395.
- Hoàng Xuân Sính. Gr-catégories. PhD thesis, Université Paris VII, 1975.
- Christopher J. Schommer-Pries. The Classification of Two-Dimensional Extended Topological Field Theories. PhD thesis, UC Berkeley, 2011. arXiv: 1112.1000.
- Long Sun. The symmetry enriched functor is fully faithful. Commun. Math. Phys., 395:1345–1382, 2022. arXiv:2201.00192.
- Vladimir G. Turaev. Modular categories and 3-manifolds invariants. International Journal of Modern Physics B, 6(11n12):1807–1824, 1992.
- Vladimir G. Turaev. Homotopy field theory in dimension 3 and crossed group-categories, 2000. arXiv:math/0005291.