Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigid and Separable Algebras in Fusion 2-Categories (2205.06453v4)

Published 13 May 2022 in math.QA and math.CT

Abstract: Rigid monoidal 1-categories are ubiquitous throughout quantum algebra and low-dimensional topology. We study a generalization of this notion, namely rigid algebras in an arbitrary monoidal 2-category. Examples of rigid algebras include $G$-graded fusion 1-categories, and $G$-crossed fusion 1-categories. We explore the properties of the 2-categories of modules and of bimodules over a rigid algebra, by giving a criterion for the existence of right and left adjoints. Then, we consider separable algebras, which are particularly well-behaved rigid algebras. Specifically, given a fusion 2-category, we prove that the 2-categories of modules and of bimodules over a separable algebra are finite semisimple. Finally, we define the dimension of a connected rigid algebra in a fusion 2-category, and prove that such an algebra is separable if and only if its dimension is non-zero.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys., 36:6073–6105, 1995.
  2. Categorification. In Higher Category Theory, volume 230 of Contemporary Mathematics, pages 1–36. AMS, 1998.
  3. On dualizability of braided tensor categories. Compositio Mathematica, 3:435–483, 2021. arXiv:1804.07538.
  4. Higher-dimensional algebra i:braided monoidal 2-categories. Advances in Mathematics, 121:196–244, 1995. arXiv:q-alg/9511013.
  5. Integrating quantum groups over surfaces. Journal of Topology, 11(4):873–916, 2018. arXiv:1501.04652.
  6. Alexei Davydov. Centre of an algebra. Advances in Mathematics, 225(1):319–348, 2010. arXiv:0908.1250.
  7. Thibault D. Décoppet. Compact semisimple 2-categories, 2021. arXiv:2111.09080.
  8. Thibault D. Décoppet. Finite semisimple module 2-categories, 2021. arXiv:2107.11037.
  9. Thibault D. Décoppet. Drinfeld centers and Morita equivalence classes of fusion 2-categories, 2022. arXiv:2211.04917.
  10. Thibault D. Décoppet. Multifusion categories and finite semisimple 2-categories. Journal of Pure and Applied Algebra, 226(8), 2022. arXiv:2012.15774.
  11. Pierre Deligne. Catégories tannakienne. In The Grothendieck Festschrift, Vol. II, volume 87 of Prog. Math., pages 111–195. Birkhäuser Boston, 1990.
  12. Clement Delcamp. Tensor network approach to electromagnetic duality in (3+1)d topological gauge models. JHEP, 149, 2022. arXiv:2112.08324.
  13. On braided fusion categories I. Selecta Mathematica, 16:1–119, 2010. arXiv:0906.0620.
  14. Fusion 2-categories and a state-sum invariant for 4-manifolds, 2018. arXiv: 1812.11933.
  15. Vladimir Drinfeld. Quantum groups. Proceedings of the International Congress of Mathematicians, Berkeley, page 798–820, 1987.
  16. Monoidal bicategories and Hopf algebroids. Advances in Mathematics, 129(AI971649):99–157, 1997.
  17. The balanced tensor product of module categories. Kyoto J. Math., 59:167–179, 2019. arXiv: 1406.4204.
  18. Dualizable tensor categories. Mem. Amer. Math. Soc. AMS, 2021. arXiv: 1312.7188.
  19. Tensor Categories. Mathematical Surveys and Monographs. AMS, 2015.
  20. On fusion categories. Ann. Math., 162:581–642, 2005. arXiv: math/0203060.
  21. Finite tensor categories. Mosc. Math. J., 4(3):627–654, 2004. arXiv:math/0301027.
  22. Dennis Gaitsgory. Sheaves of categories and the notion of 1-affineness. In Stacks and Categories in Geometry, Topology, and Algebra, volume 643 of Contemporary Mathematics, pages 127–226. AMS, 2012. arXiv:1306.4304.
  23. César Galindo. Coherence for monoidal G-categories and braided G-crossed categories. Journal of Algebra, 487:118–137, 2017. arXiv:1604.01679.
  24. Condensations in higher categories, 2019. arXiv: 1905.09566v2.
  25. Coherence for Tricategories. Memoirs of the American Mathematical Society. AMS, 1995.
  26. Enriched categories as a free cocompletion. Advances in Mathematics, 289:1–94, 2016. arXiv:1301.3191v2.
  27. Nick Gurski. Coherence in Three-Dimensional Category Theory. Cambridge Tracts in Mathematics. Cambridge University Press, 2013.
  28. Robin Houston. Linear Logic without Units. PhD thesis, University of Manchester, 2007. arXiv:1305.2231.
  29. Planar algebras in braided tensor categoriess, 2016. arXiv:1607.06041.
  30. Minimal non-degenerate extensions, 2021. arXiv:2105.15167.
  31. The center of monoidal 2-categories in 3+1d Dijkgraaf-Witten theory. Advances in Mathematics, 360(106928), 2020. arXiv:1905.04644.
  32. Jacob Lurie. On the classification of topological field theories. Curr. Dev. Math., 1:129–280, 2010. arXiv:0905.0465.
  33. Completion for braided enriched monoidal categories, 2018. arXiv:1809.09782.
  34. Victor Ostrik. Module categories, weak hopf algebras and modular invariants. Transformation Groups, 8:177–206, 2003. arXiv:math/0111139.
  35. Christopher J. Schommer-Pries. The Classification of Two-Dimensional Extended Topological Field Theories. PhD thesis, UC Berkeley, 2011. arXiv: 1112.1000.
  36. Neantro Saavedra Rivano. Catégories tannakiennes. Bulletin de la Société Mathématique de France, 100:417–430, 1972.
  37. Vladimir Turaev. Homotopy field theory in dimension 3 and crossed group-categories, 2000. arXiv:math/0005291.
  38. State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31(4):865–902, 1992.
Citations (17)

Summary

We haven't generated a summary for this paper yet.