Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Zeroth-Order Convex Optimization Using Quadratic Local Approximations (2211.02645v2)

Published 4 Nov 2022 in math.OC, cs.SY, and eess.SY

Abstract: We address black-box convex optimization problems, where the objective and constraint functions are not explicitly known but can be sampled within the feasible set. The challenge is thus to generate a sequence of feasible points converging towards an optimal solution. By leveraging the knowledge of the smoothness properties of the objective and constraint functions, we propose a novel zeroth-order method, SZO-QQ, that iteratively computes quadratic approximations of the constraint functions, constructs local feasible sets and optimizes over them. We prove convergence of the sequence of the objective values generated at each iteration to the minimum. Through experiments, we show that our method can achieve faster convergence compared with state-of-the-art zeroth-order approaches to convex optimization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.