Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Proximal Zeroth-Order Algorithm for Nonconvex Nonsmooth Problems (1810.10085v1)

Published 17 Oct 2018 in math.OC, cs.LG, and stat.ML

Abstract: In this paper, we focus on solving an important class of nonconvex optimization problems which includes many problems for example signal processing over a networked multi-agent system and distributed learning over networks. Motivated by many applications in which the local objective function is the sum of smooth but possibly nonconvex part, and non-smooth but convex part subject to a linear equality constraint, this paper proposes a proximal zeroth-order primal dual algorithm (PZO-PDA) that accounts for the information structure of the problem. This algorithm only utilize the zeroth-order information (i.e., the functional values) of smooth functions, yet the flexibility is achieved for applications that only noisy information of the objective function is accessible, where classical methods cannot be applied. We prove convergence and rate of convergence for PZO-PDA. Numerical experiments are provided to validate the theoretical results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ehsan Kazemi (24 papers)
  2. Liqiang Wang (51 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.