Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

T5lephone: Bridging Speech and Text Self-supervised Models for Spoken Language Understanding via Phoneme level T5 (2211.00586v1)

Published 1 Nov 2022 in cs.CL, cs.SD, and eess.AS

Abstract: In Spoken language understanding (SLU), a natural solution is concatenating pre-trained speech models (e.g. HuBERT) and pretrained LLMs (PLM, e.g. T5). Most previous works use pretrained LLMs with subword-based tokenization. However, the granularity of input units affects the alignment of speech model outputs and LLM inputs, and PLM with character-based tokenization is underexplored. In this work, we conduct extensive studies on how PLMs with different tokenization strategies affect spoken language understanding task including spoken question answering (SQA) and speech translation (ST). We further extend the idea to create T5lephone(pronounced as telephone), a variant of T5 that is pretrained using phonemicized text. We initialize T5lephone with existing PLMs to pretrain it using relatively lightweight computational resources. We reached state-of-the-art on NMSQA, and the T5lephone model exceeds T5 with other types of units on end-to-end SQA and ST.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube