Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Search to Pass Messages for Temporal Knowledge Graph Completion (2210.16740v1)

Published 30 Oct 2022 in cs.AI and cs.LG

Abstract: Completing missing facts is a fundamental task for temporal knowledge graphs (TKGs). Recently, graph neural network (GNN) based methods, which can simultaneously explore topological and temporal information, have become the state-of-the-art (SOTA) to complete TKGs. However, these studies are based on hand-designed architectures and fail to explore the diverse topological and temporal properties of TKG. To address this issue, we propose to use neural architecture search (NAS) to design data-specific message passing architecture for TKG completion. In particular, we develop a generalized framework to explore topological and temporal information in TKGs. Based on this framework, we design an expressive search space to fully capture various properties of different TKGs. Meanwhile, we adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost. We further conduct extensive experiments on three benchmark datasets. The results show that the searched architectures by our method achieve the SOTA performances. Besides, the searched models can also implicitly reveal diverse properties in different TKGs. Our code is released in https://github.com/striderdu/SPA.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com