Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum Fisher kernel for mitigating the vanishing similarity issue (2210.16581v1)

Published 29 Oct 2022 in quant-ph

Abstract: Quantum kernel method is a machine learning model exploiting quantum computers to calculate the quantum kernels (QKs) that measure the similarity between data. Despite the potential quantum advantage of the method, the commonly used fidelity-based QK suffers from a detrimental issue, which we call the vanishing similarity issue; detecting the difference between data becomes hard with the increase of the number of qubits, due to the exponential decrease of the expectation and the variance of the QK. This implies the need to design QKs alternative to the fidelity-based one. In this work, we propose a new class of QKs called the quantum Fisher kernels (QFKs) that take into account the geometric structure of the data source. We analytically and numerically demonstrate that the QFK based on the anti-symmetric logarithmic derivatives (ALDQFK) can avoid the issue when the alternating layered ansatzs (ALAs) are used, while the fidelity-based QK cannot even with the ALAs. Moreover, the Fourier analysis numerically elucidates that the ALDQFK can have expressivity comparable to that of the fidelity-based QK. These results indicate that the QFK paves the way for practical applications of quantum machine learning with possible quantum advantages.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube