2000 character limit reached
Stop Measuring Calibration When Humans Disagree (2210.16133v2)
Published 28 Oct 2022 in cs.CL, cs.AI, and cs.LG
Abstract: Calibration is a popular framework to evaluate whether a classifier knows when it does not know - i.e., its predictive probabilities are a good indication of how likely a prediction is to be correct. Correctness is commonly estimated against the human majority class. Recently, calibration to human majority has been measured on tasks where humans inherently disagree about which class applies. We show that measuring calibration to human majority given inherent disagreements is theoretically problematic, demonstrate this empirically on the ChaosNLI dataset, and derive several instance-level measures of calibration that capture key statistical properties of human judgements - class frequency, ranking and entropy.