Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibration tests beyond classification (2210.13355v1)

Published 21 Oct 2022 in stat.ML and cs.LG

Abstract: Most supervised machine learning tasks are subject to irreducible prediction errors. Probabilistic predictive models address this limitation by providing probability distributions that represent a belief over plausible targets, rather than point estimates. Such models can be a valuable tool in decision-making under uncertainty, provided that the model output is meaningful and interpretable. Calibrated models guarantee that the probabilistic predictions are neither over- nor under-confident. In the machine learning literature, different measures and statistical tests have been proposed and studied for evaluating the calibration of classification models. For regression problems, however, research has been focused on a weaker condition of calibration based on predicted quantiles for real-valued targets. In this paper, we propose the first framework that unifies calibration evaluation and tests for general probabilistic predictive models. It applies to any such model, including classification and regression models of arbitrary dimension. Furthermore, the framework generalizes existing measures and provides a more intuitive reformulation of a recently proposed framework for calibration in multi-class classification. In particular, we reformulate and generalize the kernel calibration error, its estimators, and hypothesis tests using scalar-valued kernels, and evaluate the calibration of real-valued regression problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David Widmann (4 papers)
  2. Fredrik Lindsten (69 papers)
  3. Dave Zachariah (52 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.