Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Benchmarking Graph Neural Networks for Internet Routing Data (2210.14189v1)

Published 25 Oct 2022 in cs.NI

Abstract: The Internet is composed of networks, called Autonomous Systems (or, ASes), interconnected to each other, thus forming a large graph. While both the AS-graph is known and there is a multitude of data available for the ASes (i.e., node attributes), the research on applying graph ML methods on Internet data has not attracted a lot of attention. In this work, we provide a benchmarking framework aiming to facilitate research on Internet data using graph-ML and graph neural network (GNN) methods. Specifically, we compile a dataset with heterogeneous node/AS attributes by collecting data from multiple online sources, and preprocessing them so that they can be easily used as input in GNN architectures. Then, we create a framework/pipeline for applying GNNs on the compiled data. For a set of tasks, we perform a benchmarking of different GNN models (as well as, non-GNN ML models) to test their efficiency; our results can serve as a common baseline for future research and provide initial insights for the application of GNNs on Internet data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.