Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Point evaluation in Paley--Wiener spaces (2210.13922v4)

Published 25 Oct 2022 in math.CA, math.CV, and math.FA

Abstract: We study the norm of point evaluation at the origin in the Paley--Wiener space $PWp$ for $0 < p < \infty$, i. e., we search for the smallest positive constant $C$, called $\mathscr{C}_p$, such that the inequality $|f(0)|p \leq C |f|_pp$ holds for every $f$ in $PWp$. We present evidence and prove several results supporting the following monotonicity conjecture: The function $p\mapsto \mathscr{C}_p/p$ is strictly decreasing on the half-line $(0,\infty)$. Our main result implies that $\mathscr{C}_p <p/2$ for $2<p<\infty$, and we verify numerically that $\mathscr{C}_p > p/2$ for $1 \leq p < 2$. We also estimate the asymptotic behavior of $\mathscr{C}_p$ as $p \to \infty$ and as $p \to 0+$. Our approach is based on expressing $\mathscr{C}_p$ as the solution of an extremal problem. Extremal functions exist for all $0<p<\infty$; they are real entire functions with only real zeros, and the extremal functions are known to be unique for $1\leq p < \infty$. Following work of H\"{o}rmander and Bernhardsson, we rely on certain orthogonality relations associated with the zeros of extremal functions, along with certain integral formulas representing respectively extremal functions and general functions at the origin. We also use precise numerical estimates for the largest eigenvalue of the Landau--Pollak--Slepian operator of time--frequency concentration. A number of qualitative and quantitative results on the distribution of the zeros of extremal functions are established. In the range $1<p<\infty$, the orthogonality relations associated with the zeros of the extremal function are linked to a de Branges space. We state a number of conjectures and further open problems pertaining to $\mathscr{C}_p$ and the extremal functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.