Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Many Diverse Solutions with Bayesian Optimization (2210.10953v4)

Published 20 Oct 2022 in cs.LG and cs.AI

Abstract: Bayesian optimization (BO) is a popular approach for sample-efficient optimization of black-box objective functions. While BO has been successfully applied to a wide range of scientific applications, traditional approaches to single-objective BO only seek to find a single best solution. This can be a significant limitation in situations where solutions may later turn out to be intractable. For example, a designed molecule may turn out to violate constraints that can only be reasonably evaluated after the optimization process has concluded. To address this issue, we propose Rank-Ordered Bayesian Optimization with Trust-regions (ROBOT) which aims to find a portfolio of high-performing solutions that are diverse according to a user-specified diversity metric. We evaluate ROBOT on several real-world applications and show that it can discover large sets of high-performing diverse solutions while requiring few additional function evaluations compared to finding a single best solution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Natalie Maus (9 papers)
  2. Kaiwen Wu (14 papers)
  3. David Eriksson (22 papers)
  4. Jacob Gardner (8 papers)
Citations (20)