Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Optimization Framework for Finding Local Optima in Expensive Multi-Modal Functions (2210.06635v2)

Published 13 Oct 2022 in math.OC and cs.LG

Abstract: Bayesian optimization (BO) is a popular global optimization scheme for sample-efficient optimization in domains with expensive function evaluations. The existing BO techniques are capable of finding a single global optimum solution. However, finding a set of global and local optimum solutions is crucial in a wide range of real-world problems, as implementing some of the optimal solutions might not be feasible due to various practical restrictions (e.g., resource limitation, physical constraints, etc.). In such domains, if multiple solutions are known, the implementation can be quickly switched to another solution, and the best possible system performance can still be obtained. This paper develops a multimodal BO framework to effectively find a set of local/global solutions for expensive-to-evaluate multimodal objective functions. We consider the standard BO setting with Gaussian process regression representing the objective function. We analytically derive the joint distribution of the objective function and its first-order derivatives. This joint distribution is used in the body of the BO acquisition functions to search for local optima during the optimization process. We introduce variants of the well-known BO acquisition functions to the multimodal setting and demonstrate the performance of the proposed framework in locating a set of local optimum solutions using multiple optimization problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yongsheng Mei (14 papers)
  2. Tian Lan (162 papers)
  3. Mahdi Imani (9 papers)
  4. Suresh Subramaniam (24 papers)
Citations (15)