An algebraic model for the free loop space (2210.10096v5)
Abstract: We describe an algebraic chain level construction that models the passage from an arbitrary topological space to its free loop space. The input of the construction is a categorical coalgebra, i.e. a curved coalgebra satisfying certain properties, and the output is a chain complex. The construction is a modified version of the coHochschild complex of a differential graded (dg) coalgebra. When applied to the chains on an arbitrary simplicial set $X$, appropriately interpreted, it yields a chain complex that is naturally quasi-isomorphic to the singular chains on the free loop space of the geometric realization of $X$. We relate this construction to a twisted tensor product model for the free loop space constructed using the adjoint action of a dg Hopf algebra model for the based loop space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.