Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Hardness of Samples Need to be Quantified for a Reliable Evaluation System: Exploring Potential Opportunities with a New Task (2210.07631v1)

Published 14 Oct 2022 in cs.CL and cs.CV

Abstract: Evaluation of models on benchmarks is unreliable without knowing the degree of sample hardness; this subsequently overestimates the capability of AI systems and limits their adoption in real world applications. We propose a Data Scoring task that requires assignment of each unannotated sample in a benchmark a score between 0 to 1, where 0 signifies easy and 1 signifies hard. Use of unannotated samples in our task design is inspired from humans who can determine a question difficulty without knowing its correct answer. This also rules out the use of methods involving model based supervision (since they require sample annotations to get trained), eliminating potential biases associated with models in deciding sample difficulty. We propose a method based on Semantic Textual Similarity (STS) for this task; we validate our method by showing that existing models are more accurate with respect to the easier sample-chunks than with respect to the harder sample-chunks. Finally we demonstrate five novel applications.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.