Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower Simulation (2210.07430v1)

Published 14 Oct 2022 in physics.ins-det, cs.LG, hep-ex, and stat.ML

Abstract: Calorimeter simulation is the most computationally expensive part of Monte Carlo generation of samples necessary for analysis of experimental data at the Large Hadron Collider (LHC). The High-Luminosity upgrade of the LHC would require an even larger amount of such samples. We present a technique based on Discrete Variational Autoencoders (DVAEs) to simulate particle showers in Electromagnetic Calorimeters. We discuss how this work paves the way towards exploration of quantum annealing processors as sampling devices for generation of simulated High Energy Physics datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.