2000 character limit reached
CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models (2312.03179v5)
Published 5 Dec 2023 in hep-ex, cs.LG, and quant-ph
Abstract: The Large Hadron Collider's high luminosity era presents major computational challenges in the analysis of collision events. Large amounts of Monte Carlo (MC) simulation will be required to constrain the statistical uncertainties of the simulated datasets below these of the experimental data. Modelling of high-energy particles propagating through the calorimeter section of the detector is the most computationally intensive MC simulation task. We introduce a technique combining recent advancements in generative models and quantum annealing for fast and efficient simulation of high-energy particle-calorimeter interactions.
- Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC, Physics Letters B 716, 1 (2012).
- Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B 716, 30 (2012).
- S. Agostinelli et al. (GEANT4), GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).
- AtlFast3: The Next Generation of Fast Simulation in ATLAS, Comput. Softw. Big Sci. 6, 7 (2022), arXiv:2109.02551 [hep-ex] .
- ATLAS HL-LHC Computing Conceptual Design Report, Tech. Rep. (CERN, Geneva, 2020).
- D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv:1312.6114 (2014).
- J. T. Rolfe, Discrete variational autoencoders, arXiv preprint arXiv:1609.02200 (2016).
- A. Vahdat et al., Dvae++: Discrete variational autoencoders with overlapping transformations, in International Conference on Machine Learning (PMLR, 2018) pp. 5035–5044.
- A. H. Khoshaman and M. H. Amin, Gumbolt: Extending gumbel trick to boltzmann priors, arXiv:1805.07349 (2018).
- M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97, 014021 (2018), arXiv:1712.10321 [hep-ex] .
- C. Krause and D. Shih, Fast and accurate simulations of calorimeter showers with normalizing flows, Phys. Rev. D 107, 113003 (2023).
- S. H. Adachi and M. P. Henderson, Application of Quantum Annealing to Training of Deep Neural Networks, arXiv e-prints , arXiv:1510.06356 (2015), arXiv:1510.06356 [quant-ph] .
- D. J. Rezende et al., Stochastic backpropagation and approximate inference in deep generative models, in International Conference on Machine Learning (PMLR, 2014) pp. 1278–1286.
- Deep generative models for fast shower simulation in ATLAS, Tech. Rep. (CERN, Geneva, 2018).
- M. H. Amin, Searching for quantum speedup in quasistatic quantum annealers, Phys. Rev. A 92, 052323 (2015).
- G. Xu and W. S. Oates, Adaptive hyperparameter updating for training restricted boltzmann machines on quantum annealers, Scientific Reports 11, 10.1038/s41598-021-82197-1 (2021).
- QaloSim, https://github.com/QaloSim/CaloQVAE/tree/chimera-dwave-sampling (2023).