Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp weighted fractional Hardy inequalities (2210.06760v3)

Published 13 Oct 2022 in math.AP and math.FA

Abstract: We investigate the weighted fractional order Hardy inequality $$ \int_{\Omega}\int_{\Omega}\frac{|f(x)-f(y)|{p}}{|x-y|{d+sp}}\text{dist}(x,\partial\Omega){-\alpha}\text{dist}(y,\partial\Omega){-\beta}\,dy\,dx\geq C\int_{\Omega}\frac{|f(x)|{p}}{\text{dist}(x,\partial\Omega){sp+\alpha+\beta}}\,dx, $$ for $\Omega=\mathbb{R}{d-1}\times(0,\infty)$, $\Omega$ being a convex domain or $\Omega=\mathbb{R}d\setminus{0}$. Our work focuses on finding the best (i.e. sharp) constant $C=C(d,s,p,\alpha,\beta)$ in all cases. We also obtain weighted version of the fractional Hardy-Sobolev-Maz'ya inequality. The proofs are based on general Hardy inequalities and the non-linear ground state representation, established by Frank and Seiringer.

Citations (9)

Summary

We haven't generated a summary for this paper yet.