Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Almost Sure Convergence of Distributed Optimization with Imperfect Information Sharing (2210.05897v2)

Published 12 Oct 2022 in math.OC

Abstract: To design algorithms that reduce communication cost or meet rate constraints and are robust to communication noise, we study convex distributed optimization problems where a set of agents are interested in solving a separable optimization problem collaboratively with imperfect information sharing over time-varying networks. We study the almost sure convergence of a two-time-scale decentralized gradient descent algorithm to reach the consensus on an optimizer of the objective loss function. One time scale fades out the imperfect incoming information from neighboring agents, and the second one adjusts the local loss functions' gradients. We show that under certain conditions on the connectivity of the underlying time-varying network and the time-scale sequences, the dynamics converge almost surely to an optimal point supported in the optimizer set of the loss function.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.