Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Malliavin differentiability of solutions of hyperbolic stochastic partial differential equations with irregular drifts (2210.04694v2)

Published 10 Oct 2022 in math.PR

Abstract: We prove path-by-path uniqueness of solution to hyperbolic stochastic partial differential equations when the drift coefficient is the difference of two componentwise monotone Borel measurable functions of spatial linear growth. The Yamada-Watanabe principle for SDE driven by Brownian sheet then allows to derive strong uniqueness for such equation and thus extending the results in [Bogso, Dieye and Menoukeu Pamen, Elect. J. Probab., 27:1-26, 2022] and [Nualart and Tindel, Potential Anal., 7(3):661--680, 1997]. Assuming that the drift is globally bounded, we show that the unique strong solution is Malliavin differentiable. The case of spatial linear growth drift coefficient is also studied.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.