Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Irreducible generating tuples of Fuchsian groups (2210.03611v1)

Published 7 Oct 2022 in math.GT and math.GR

Abstract: L. Louder showed that any generating tuple of a surface group is Nielsen equivalent to a stabilized standard generating tuple i.e. $(a_1,\ldots ,a_k,1\ldots, 1)$ where $(a_1,\ldots ,a_k)$ is the standard generating tuple. This implies in particular that irreducible generating tuples, i.e. tuples that are not Nielsen equivalent to a tuple of the form $(g_1,\ldots ,g_k,1)$, are minimal. In a previous work the first author generalized Louder's ideas and showed that all irreducible and non-standard generating tuples of sufficiently large Fuchsian groups can be represented by so-called almost orbifold covers endowed with a rigid generating tuple. In the present paper a variation of the ideas from \cite{W2} is used to show that this almost orbifold cover with a rigid generating tuple is unique up to the appropriate equivalence. It is moreover shown that any such generating tuple is irreducible. This provides a way to exhibit many Nielsen classes of non-minimal irreducible generating tuples for Fuchsian groups. As an application we show that generating tuples of fundamental groups of Haken Seifert manifolds corresponding to irreducible horizontal Heegaard splittings are irreducible.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.