Universal Quantum Speedup for Branch-and-Bound, Branch-and-Cut, and Tree-Search Algorithms (2210.03210v1)
Abstract: Mixed Integer Programs (MIPs) model many optimization problems of interest in Computer Science, Operations Research, and Financial Engineering. Solving MIPs is NP-Hard in general, but several solvers have found success in obtaining near-optimal solutions for problems of intermediate size. Branch-and-Cut algorithms, which combine Branch-and-Bound logic with cutting-plane routines, are at the core of modern MIP solvers. Montanaro proposed a quantum algorithm with a near-quadratic speedup compared to classical Branch-and-Bound algorithms in the worst case, when every optimal solution is desired. In practice, however, a near-optimal solution is satisfactory, and by leveraging tree-search heuristics to search only a portion of the solution tree, classical algorithms can perform much better than the worst-case guarantee. In this paper, we propose a quantum algorithm, Incremental-Quantum-Branch-and-Bound, with universal near-quadratic speedup over classical Branch-and-Bound algorithms for every input, i.e., if classical Branch-and-Bound has complexity $Q$ on an instance that leads to solution depth $d$, Incremental-Quantum-Branch-and-Bound offers the same guarantees with a complexity of $\tilde{O}(\sqrt{Q}d)$. Our results are valid for a wide variety of search heuristics, including depth-based, cost-based, and $A{\ast}$ heuristics. Universal speedups are also obtained for Branch-and-Cut as well as heuristic tree search. Our algorithms are directly comparable to commercial MIP solvers, and guarantee near quadratic speedup whenever $Q \gg d$. We use numerical simulation to verify that $Q \gg d$ for typical instances of the Sherrington-Kirkpatrick model, Maximum Independent Set, and Portfolio Optimization; as well as to extrapolate the dependence of $Q$ on input size parameters. This allows us to project the typical performance of our quantum algorithms for these important problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.