Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Universal Quantum Speedup for Branch-and-Bound, Branch-and-Cut, and Tree-Search Algorithms (2210.03210v1)

Published 6 Oct 2022 in quant-ph, math.OC, and q-fin.CP

Abstract: Mixed Integer Programs (MIPs) model many optimization problems of interest in Computer Science, Operations Research, and Financial Engineering. Solving MIPs is NP-Hard in general, but several solvers have found success in obtaining near-optimal solutions for problems of intermediate size. Branch-and-Cut algorithms, which combine Branch-and-Bound logic with cutting-plane routines, are at the core of modern MIP solvers. Montanaro proposed a quantum algorithm with a near-quadratic speedup compared to classical Branch-and-Bound algorithms in the worst case, when every optimal solution is desired. In practice, however, a near-optimal solution is satisfactory, and by leveraging tree-search heuristics to search only a portion of the solution tree, classical algorithms can perform much better than the worst-case guarantee. In this paper, we propose a quantum algorithm, Incremental-Quantum-Branch-and-Bound, with universal near-quadratic speedup over classical Branch-and-Bound algorithms for every input, i.e., if classical Branch-and-Bound has complexity $Q$ on an instance that leads to solution depth $d$, Incremental-Quantum-Branch-and-Bound offers the same guarantees with a complexity of $\tilde{O}(\sqrt{Q}d)$. Our results are valid for a wide variety of search heuristics, including depth-based, cost-based, and $A{\ast}$ heuristics. Universal speedups are also obtained for Branch-and-Cut as well as heuristic tree search. Our algorithms are directly comparable to commercial MIP solvers, and guarantee near quadratic speedup whenever $Q \gg d$. We use numerical simulation to verify that $Q \gg d$ for typical instances of the Sherrington-Kirkpatrick model, Maximum Independent Set, and Portfolio Optimization; as well as to extrapolate the dependence of $Q$ on input size parameters. This allows us to project the typical performance of our quantum algorithms for these important problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.