Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Synthetic Dataset Generation for Privacy-Preserving Machine Learning (2210.03205v5)

Published 6 Oct 2022 in cs.CR, cs.AI, cs.CV, and cs.LG

Abstract: Machine Learning (ML) has achieved enormous success in solving a variety of problems in computer vision, speech recognition, object detection, to name a few. The principal reason for this success is the availability of huge datasets for training deep neural networks (DNNs). However, datasets can not be publicly released if they contain sensitive information such as medical or financial records. In such cases, data privacy becomes a major concern. Encryption methods offer a possible solution to this issue, however their deployment on ML applications is non-trivial, as they seriously impact the classification accuracy and result in substantial computational overhead.Alternatively, obfuscation techniques can be used, but maintaining a good balance between visual privacy and accuracy is challenging. In this work, we propose a method to generate secure synthetic datasets from the original private datasets. In our method, given a network with Batch Normalization (BN) layers pre-trained on the original dataset, we first record the layer-wise BN statistics. Next, using the BN statistics and the pre-trained model, we generate the synthetic dataset by optimizing random noises such that the synthetic data match the layer-wise statistical distribution of the original model. We evaluate our method on image classification dataset (CIFAR10) and show that our synthetic data can be used for training networks from scratch, producing reasonable classification performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.